home *** CD-ROM | disk | FTP | other *** search
- function [k,s,e] = dlqr(a,b,q,r,nn)
- %DLQR Linear quadratic regulator design for discrete-time systems.
- % [K,S,E] = DLQR(A,B,Q,R) calculates the optimal feedback gain
- % matrix K such that the feedback law u[n] = -Kx[n] minimizes the
- % cost function
- % J = Sum {x'Qx + u'Ru}
- % subject to the constraint equation:
- % x[n+1] = Ax[n] + Bu[n]
- %
- % Also returned is S, the steady-state solution to the associated
- % discrete matrix Riccati equation and the closed loop eigenvalues
- % E, -1
- % 0 = S - A'SA + A'SB(R+B'SB) BS'A - Q E = EIG(A-B*K)
- %
- % [K.S,E] = DLQR(A,B,Q,R,N) includes the cross-term N that relates
- % u to x in the cost function:
- %
- % J = Sum {x'Qx + u'Ru + 2*x'Nu}
- %
- % The controller can be formed with DREG.
- %
- % See also: DLQRY, LQRD, and DREG.
-
- % J.N. Little 4-21-85
- % Revised 6-23-86 JNL
- % Revised 7-16-90 Clay M. Thompson
- % Copyright (c) 1986-93 by the MathWorks, Inc.
-
- error(nargchk(4,5,nargin));
- error(abcdchk(a,b));
- if ~length(a) | ~length(b)
- error('A and B matrices cannot be empty.')
- end
-
- [m,n] = size(a);
- [mb,nb] = size(b);
- [mq,nq] = size(q);
- if (m ~= mq) | (n ~= nq)
- error('A and Q must be the same size');
- end
- [mr,nr] = size(r);
- if (mr ~= nr) | (nb ~= mr)
- error('B and R must be consistent');
- end
-
- if nargin==5
- [mn,nnn] = size(nn);
- if (mn ~= m) | (nnn ~= nr), error('N must be consistent with Q and R'); end
- % Add cross term
- q = q - nn/r*nn';
- a = a - b/r*nn';
- else
- nn = zeros(m,nb);
- end
-
- % Check if q is positive semi-definite and symmetric
- nq = norm(q,1);
- if any(eig(q) < -eps*nq) | (norm(q'-q,1)/nq > eps)
- disp('Warning: Q is not symmetric and positive semi-definite');
- end
- % Check if r is positive definite and symmetric
- nr = norm(r,1);
- if any(eig(r) <= -eps*nr) | (norm(r'-r,1)/nr > eps)
- disp('Warning: R is not symmetric and positive definite');
- end
-
- % eigenvectors of Hamiltonian
- [v,d] = eig([a+b/r*b'/a'*q -b/r*b'/a'; -a'\q inv(a)']);
-
- d = diag(d);
- [e,index] = sort(abs(d)); % sort on magnitude of eigenvalues
- if (~((e(n) < 1) & (e(n+1)>1)))
- error('Can''t order eigenvalues, (A,B) may be uncontrollable.');
- else
- e = d(index(1:n));
- end
- % select vectors with eigenvalues inside unit circle
- chi = v(1:n,index(1:n));
- lambda = v((n+1):(2*n),index(1:n));
- s = real(lambda/chi);
- k = (r+b'*s*b)\b'*s*a + r\nn';
-