home *** CD-ROM | disk | FTP | other *** search
- function [l,m,p,e] = dlqew(a,g,c,j,q,r)
- %DLQEW Discrete linear quadratic estimator design for the system:
- % x[n+1] = Ax[n] + Bu[n] + Gw[n] {State equation}
- % z[n] = Cx[n] + Du[n] + Jw[n] + v[n] {Measurements}
- % with process noise and measurement noise covariances:
- % E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
- %
- % L = DLQEW(A,G,C,J,Q,R) returns the gain matrix L such that the
- % discrete, stationary Kalman filter with time and observation
- % update equations:
- % _ * * _ _
- % x[n+1] = Ax[n] + Bu[n] x[n] = x[n] + L(z[n] - Cx[n] - Du[n])
- % produces an LQG optimal estimate of x. The estimator can be
- % formed using DESTIM.
- %
- % [L,M,P,E] = DLQEW(A,G,C,J,Q,R) returns the gain matrix L, the
- % Riccati equation solution M, the estimate error covariance after
- % the measurement update: * *
- % P = E{[x-x][x-x]'}
- % and the closed-loop eigenvalues of the estimator, E=EIG(A-A*L*C).
- %
- % See also: DLQE, LQED and DESTIM.
-
- % Clay M. Thompson 7-23-90
- % Copyright (c) 1986-93 by the MathWorks, Inc.
-
- error(nargchk(6,6,nargin));
-
- rr = r + j*q*j';
- nn = q*j';
- [l,m,p,e] = dlqe(a,g,c,q,rr,nn);
-