home *** CD-ROM | disk | FTP | other *** search
- function [k,s,e] = dlqry(a,b,c,d,q,r)
- %DLQRY Linear quadratic regulator design with output weighting for
- % discrete-time systems.
- %
- % [K,S,E] = DLQRY(A,B,C,D,Q,R) calculates the optimal feedback gain
- % matrix K such that the feedback law u[n] = -Kx[n] minimizes the
- % cost function
- %
- % J = Sum {y'Qy + u'Ru}
- %
- % subject to the constraint equation:
- %
- % x[n+1] = Ax[n] + Bu[n]
- % y[n] = Cx[n] + Du[n]
- %
- % Also returned is S, the steady-state solution to the associated
- % discrete matrix Riccati equation and the closed loop eigenvalues
- % E = EIG(A-B*K).
- %
- % The controller can be formed with DREG.
- %
- % See also: DLQR, LQRD, and DREG.
-
- % Clay M. Thompson 7-23-90
- % Copyright (c) 1986-93 by the MathWorks, Inc.
-
- error(nargchk(6,6,nargin));
- qq = c'*q*c;
- rr = r + d'*q*d;
- nn = c'*q*d;
- [k,s,e] = dlqr(a,b,qq,rr,nn);
-