home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math:17255 rec.puzzles:8076
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!not-for-mail
- From: edgar@function.mps.ohio-state.edu (Gerald Edgar)
- Newsgroups: sci.math,rec.puzzles
- Subject: Re: Integral Puzzle (Cute, not Evil)
- Date: 21 Dec 1992 08:44:30 -0500
- Organization: The Ohio State University, Dept. of Math.
- Lines: 27
- Message-ID: <1h4hnuINNnec@function.mps.ohio-state.edu>
- References: <1992Dec19.011244.2780@Csli.Stanford.EDU>
- NNTP-Posting-Host: function.mps.ohio-state.edu
-
- In article <1992Dec19.011244.2780@Csli.Stanford.EDU> hiraga@Csli.Stanford.EDU (Yuzuru Hiraga) writes:
- >
- >Let f be any function such that:
- > * for 0<=x<=1; 0<=f(x)<= a
- >
- > /1
- > * | f(x)dx = A
- > /0
- >where a and A are given constants (obviously, A<=a).
- >
- >What are the maximum and minimum values that
- >
- > /1 2
- > | {f(x)} dx
- > /0
- >
- >can take?
-
- In more flowery language: given the L_infinity and L_1 norms of f, estimate
- the L_2 norm of f.
-
-
- --
- Gerald A. Edgar Internet: edgar@mps.ohio-state.edu
- Department of Mathematics Bitnet: EDGAR@OHSTPY
- The Ohio State University telephone: 614-292-0395 (Office)
- Columbus, OH 43210 -292-4975 (Math. Dept.) -292-1479 (Dept. Fax)
-