home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.physics
- Path: sparky!uunet!well!sarfatti
- From: sarfatti@well.sf.ca.us (Jack Sarfatti)
- Subject: Re: One Ramsay error in no-go FTL
- Message-ID: <Bxw26v.M72@well.sf.ca.us>
- Sender: news@well.sf.ca.us
- Organization: Whole Earth 'Lectronic Link
- Date: Wed, 18 Nov 1992 01:44:55 GMT
- Lines: 41
-
-
- Ramsay writes:
-
- "If f and g differed only by a phase, then there would be
- constructive and/or destructive interference everywhere, uniformly,
- according to what that phase difference was."
-
- Let f(x) = e^is(x)g(x)
-
- f(x) + g(x) = g(x)[e^is(x) + 1]
-
- |f(x) + g(x)|^2 = 2|g(x)|^2 {1 + cos[s(x)]}
-
- Conservation of energy requires
-
- Integral{|f(x) + g(x)|^2 dx} = Integral{[|f(x)|^2 + |g(x)|^2]dx}
-
- therefore,
-
- Integral{|g(x)|^2cos[s(x)]dx} = 0
-
- so that Ramsay's remark is not strictly mathematically correct. If the
- phase s(x) were constant it would have to be pi/2.
-
- so for example, if i|a,e,+> = |a,o,+>
-
- |a,b> -> |a,e,+>{e^iphi|b,e,+> + i|b,o,->}/sqrt2
-
- = |a,e,+>|b>
-
- Therefore the receiver local probabilities are:
-
- p(e') = |<e'|b>|^2 = [1 + sin(2theta)cos(phi - pi/2)]/2
-
- = [1 + sin(2theta)sin(phi)]/2
-
- and p(o') = 1 - p(e')
-
- so that the quantum connection signal is
-
- p(e') - p(o') = sin(2theta)sin(phi)
-