home *** CD-ROM | disk | FTP | other *** search
- /*
- * REMOVED FORMAL PARAMETERS FROM FUNCTION DEFINITIONS (1/4/92)
- */
-
-
- #ifndef MPMATH_H
- #define MPMATH_H
-
- #ifndef _CMPLX_DEFINED
- #include "cmplx.h"
- #endif
-
- #ifdef XFRACT
- #define far
- #endif
-
-
- #ifndef XFRACT
- struct MP {
- int Exp;
- unsigned long Mant;
- };
- #else
- struct MP {
- double val;
- };
- #endif
-
- struct MPC {
- struct MP x, y;
- };
-
- extern int MPOverflow;
- extern int DivideOverflow;
-
- /* Mark Peterson's expanded floating point operators. Automatically uses
- either the 8086 or 80386 processor type specified in global 'cpu'. If
- the operation results in an overflow (result < 2**(2**14), or division
- by zero) the global 'MPoverflow' is set to one. */
-
- /* function pointer support added by Tim Wegner 12/07/89 */
- extern int (*pMPcmp)(struct MP , struct MP );
- extern struct MP *(*pMPmul)(struct MP , struct MP );
- extern struct MP *(*pMPdiv)(struct MP , struct MP );
- extern struct MP *(*pMPadd)(struct MP , struct MP );
- extern struct MP *(*pMPsub)(struct MP , struct MP );
- extern struct MP *(*pd2MP)(double ) ;
- extern double *(*pMP2d)(struct MP ) ;
-
-
- /*** Formula Declarations ***/
- enum MATH_TYPE { D_MATH, M_MATH, L_MATH };
- extern enum MATH_TYPE MathType;
-
- #define fDiv(x, y, z) (void)((*(long*)&z) = RegDivFloat(*(long*)&x, *(long*)&y))
- #define fMul16(x, y, z) (void)((*(long*)&z) = r16Mul(*(long*)&x, *(long*)&y))
- #define fShift(x, Shift, z) (void)((*(long*)&z) = \
- RegSftFloat(*(long*)&x, Shift))
- #define Fg2Float(x, f, z) (void)((*(long*)&z) = RegFg2Float(x, f))
- #define Float2Fg(x, f) RegFloat2Fg(*(long*)&x, f)
- #define fLog14(x, z) (void)((*(long*)&z) = \
- RegFg2Float(LogFloat14(*(long*)&x), 16))
- #define fExp14(x, z) (void)((*(long*)&z) = ExpFloat14(*(long*)&x));
- #define fSqrt14(x, z) fLog14(x, z); fShift(z, -1, z); fExp14(z, z)
-
- /* the following are declared 4 dimensional as an experiment */
- /* changeing declarations to _CMPLX and _LCMPLX restores the code */
- /* to 2D */
- union Arg {
- _CMPLX d;
- struct MPC m;
- _LCMPLX l;
- /*
- _DHCMPLX dh;
- _LHCMPLX lh; */
- };
-
- struct ConstArg {
- char *s;
- int len;
- union Arg a;
- };
-
- extern union Arg *Arg1,*Arg2;
-
- extern void lStkSin(void),lStkCos(void),lStkSinh(void),lStkCosh(void),lStkLog(void),lStkExp(void),lStkSqr(void);
- extern void dStkSin(void),dStkCos(void),dStkSinh(void),dStkCosh(void),dStkLog(void),dStkExp(void),dStkSqr(void);
-
- extern void (*ltrig0)(void);
- extern void (*ltrig1)(void);
- extern void (*ltrig2)(void);
- extern void (*ltrig3)(void);
- extern void (*dtrig0)(void);
- extern void (*dtrig1)(void);
- extern void (*dtrig2)(void);
- extern void (*dtrig3)(void);
-
- /* -------------------------------------------------------------------- */
- /* The following #defines allow the complex transcendental functions */
- /* in parser.c to be used here thus avoiding duplicated code. */
- /* -------------------------------------------------------------------- */
- #ifndef XFRACT
-
- #define CMPLXmod(z) (sqr((z).x)+sqr((z).y))
- #define CMPLXconj(z) ((z).y = -((z).y))
- #define LCMPLXmod(z) (lsqr((z).x)+lsqr((z).y))
- #define LCMPLXconj(z) ((z).y = -((z).y))
-
-
- #define LCMPLXtrig0(arg,out) Arg1->l = (arg); ltrig0(); (out)=Arg1->l
- #define LCMPLXtrig1(arg,out) Arg1->l = (arg); ltrig1(); (out)=Arg1->l
- #define LCMPLXtrig2(arg,out) Arg1->l = (arg); ltrig2(); (out)=Arg1->l
- #define LCMPLXtrig3(arg,out) Arg1->l = (arg); ltrig3(); (out)=Arg1->l
-
- #endif /* XFRACT */
-
- #define CMPLXtrig0(arg,out) Arg1->d = (arg); dtrig0(); (out)=Arg1->d
- #define CMPLXtrig1(arg,out) Arg1->d = (arg); dtrig1(); (out)=Arg1->d
- #define CMPLXtrig2(arg,out) Arg1->d = (arg); dtrig2(); (out)=Arg1->d
- #define CMPLXtrig3(arg,out) Arg1->d = (arg); dtrig3(); (out)=Arg1->d
-
- #ifndef XFRACT
-
- #define LCMPLXsin(arg,out) Arg1->l = (arg); lStkSin(); (out) = Arg1->l
- #define LCMPLXcos(arg,out) Arg1->l = (arg); lStkCos(); (out) = Arg1->l
- #define LCMPLXsinh(arg,out) Arg1->l = (arg); lStkSinh(); (out) = Arg1->l
- #define LCMPLXcosh(arg,out) Arg1->l = (arg); lStkCosh(); (out) = Arg1->l
- #define LCMPLXlog(arg,out) Arg1->l = (arg); lStkLog(); (out) = Arg1->l
- #define LCMPLXexp(arg,out) Arg1->l = (arg); lStkExp(); (out) = Arg1->l
- /*
- #define LCMPLXsqr(arg,out) Arg1->l = (arg); lStkSqr(); (out) = Arg1->l
- */
- #define LCMPLXsqr(arg,out) \
- (out).x = lsqr((arg).x) - lsqr((arg).y);\
- (out).y = multiply((arg).x, (arg).y, bitshiftless1)
- #define LCMPLXsqr_old(out) \
- (out).y = multiply(lold.x, lold.y, bitshiftless1);\
- (out).x = ltempsqrx - ltempsqry
-
- #define LCMPLXpwr(arg1,arg2,out) Arg2->l = (arg1); Arg1->l = (arg2);\
- lStkPwr(); Arg1++; Arg2++; (out) = Arg2->l
- #define LCMPLXmult(arg1,arg2,out) Arg2->l = (arg1); Arg1->l = (arg2);\
- lStkMul(); Arg1++; Arg2++; (out) = Arg2->l
- #define LCMPLXadd(arg1,arg2,out) \
- (out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
- #define LCMPLXsub(arg1,arg2,out) \
- (out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
-
- #define LCMPLXtimesreal(arg,real,out) \
- (out).x = multiply((arg).x,(real),bitshift);\
- (out).y = multiply((arg).y,(real),bitshift)
-
- #define LCMPLXrecip(arg,out) \
- { long denom; denom = lsqr((arg).x) + lsqr((arg).y);\
- if(denom==0L) overflow=1; else {(out).x = divide((arg).x,denom,bitshift);\
- (out).y = -divide((arg).y,denom,bitshift);}}
- #endif /* XFRACT */
-
- #define CMPLXsin(arg,out) Arg1->d = (arg); dStkSin(); (out) = Arg1->d
- #define CMPLXcos(arg,out) Arg1->d = (arg); dStkCos(); (out) = Arg1->d
- #define CMPLXsinh(arg,out) Arg1->d = (arg); dStkSinh(); (out) = Arg1->d
- #define CMPLXcosh(arg,out) Arg1->d = (arg); dStkCosh(); (out) = Arg1->d
- #define CMPLXlog(arg,out) Arg1->d = (arg); dStkLog(); (out) = Arg1->d
- #define CMPLXexp(arg,out) FPUcplxexp(&(arg), &(out))
- /*
- #define CMPLXsqr(arg,out) Arg1->d = (arg); dStkSqr(); (out) = Arg1->d
- */
- #define CMPLXsqr(arg,out) \
- (out).x = sqr((arg).x) - sqr((arg).y);\
- (out).y = ((arg).x+(arg).x) * (arg).y
- #define CMPLXsqr_old(out) \
- (out).y = (old.x+old.x) * old.y;\
- (out).x = tempsqrx - tempsqry
-
- #define CMPLXpwr(arg1,arg2,out) (out)= ComplexPower((arg1), (arg2))
- #define CMPLXmult1(arg1,arg2,out) Arg2->d = (arg1); Arg1->d = (arg2);\
- dStkMul(); Arg1++; Arg2++; (out) = Arg2->d
- #define CMPLXmult(arg1,arg2,out) \
- {\
- _CMPLX TmP;\
- TmP.x = (arg1).x*(arg2).x - (arg1).y*(arg2).y;\
- TmP.y = (arg1).x*(arg2).y + (arg1).y*(arg2).x;\
- (out) = TmP;\
- }
- #define CMPLXadd(arg1,arg2,out) \
- (out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
- #define CMPLXsub(arg1,arg2,out) \
- (out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
- #define CMPLXtimesreal(arg,real,out) \
- (out).x = (arg).x*(real);\
- (out).y = (arg).y*(real)
-
- #define CMPLXrecip(arg,out) \
- { double denom; denom = sqr((arg).x) + sqr((arg).y);\
- if(denom==0.0) {(out).x = 1.0e10;(out).y = 1.0e10;}else\
- { (out).x = (arg).x/denom;\
- (out).y = -(arg).y/denom;}}
-
- #endif
-