home *** CD-ROM | disk | FTP | other *** search
- function [cg,ph,w] = dcgloci(Z1,Z2,Z3,Z4,Z5,Z6,Z7)
- %DCGLOCI Characteristic Gain/Phase frequency response of discrete systems.
- % DCGLOCI(A,B,C,D,Ts) or DCGLOCI(SS_,Ts) produces a Char. Gain/Phase
- % Bode plot of the complex matrix:
- % -1
- % G(w) = C(exp(jwT)I-A) B + D
- % as a function of frequency. The Char. Gain/Phase are an extension
- % of the Bode magnitude response for MIMO system. The frequency
- % range and number of points are chosen automatically. For square
- % systems, DCGLOCI(A,B,C,D,'inv') produces the Char. Gain/Phase of
- % the inverse complex matrix
- % -1 -1 -1
- % G (w) = [ C(exp(jwT)I-A) B + D ]
- % DCGLOCI(A,B,C,D,Ts,W) or DCGLOCI(A,B,C,D,Ts,W,'inv') use the user-
- % supplied frequency vector W which must contain the frequencies, in
- % radians/sec, at which the Char. Gain/Phase response is to be
- % evaluated. Aliasing will occur at frequencies greater than the
- % Nyquist frequency (pi/Ts). When invoked with left hand arguments,
- % [CG,PH,W] = DCGLOCI(A,B,C,D,Ts,...)
- % returns the frequency vector W and the matrices CG,PH with
- % MIN(NU,NY) columns and length(W) rows, where NU is the number of
- % inputs and NY is the number of outputs. No plot is drawn on the
- % screen. The Char. Gain/Phase are returned in descending order.
- %
- % See also: LOGSPACE, SEMILOGX, DNICHOLS, DNYQUIST and DBODE.
-
- % R. Y. Chiang & M. G. Safonov 6/29/87
- % Copyright (c) 1988 by the MathWorks, Inc.
- % All Rights Reserved.
-
- if nargin==0, eval('dexresp(''dcgloci'',1)'), return, end
-
- inargs='(a,b,c,d,Ts,w,invflag)';
- eval(mkargs(inargs,nargin,'ss'))
-
-
- if nargin==7, % Trap call to RCT function
- if ~isstr(invflag),
- eval('[cg,ph] = dcgloci2(a,b,c,d,Ts,w,invflag);')
- return
- end
- end
-
- error(nargchk(5,7,nargin));
- error(abcdchk(a,b,c,d));
- if ~(length(d) | (length(b) & length(c)))
- return;
- end
-
- % Determine status of invflag
- if nargin==5,
- invflag = [];
- w = [];
- elseif (nargin==6)
- if (isstr(w)),
- invflag = w;
- w = [];
- [ny,nu] = size(d);
- if (ny~=nu), error('The state space system must be square when using ''inv''.'); end
- else
- invflag = [];
- end
-
- else
- [ny,nu] = size(d);
- if (ny~=nu), error('The state space system must be square when using ''inv''.'); end
- end
-
- % Generate frequency range if one is not specified.
-
- % If frequency vector supplied then use Auto-selection algorithm
- % Fifth argument determines precision of the plot.
- if ~length(w)
- w=dfrqint(a,b,c,d,Ts,30);
- end
-
- [nx,na] = size(a);
- [no,ns] = size(c);
- nw = max(size(w));
-
- % Balance A
- [t,a] = balance(a);
- b = t \ b;
- c = c * t;
-
- % Reduce A to Hessenberg form:
- [p,a] = hess(a);
-
- % Apply similarity transformations from Hessenberg
- % reduction to B and C:
- b = p' * b;
- c = c * p;
-
- s = exp(sqrt(-1)*w*Ts);
- I=eye(length(a));
- if nx > 0,
- for i=1:length(s)
- if isempty(invflag),
- char = c*((s(i)*I-a)\b) + d;
- cgg(:,i) = sort(abs(eig(char)));
- ph(:,i) = sort(180./pi*imag(log(eig(char))));
- else
- char = inv(c*((s(i)*I-a)\b) + d);
- cgg(:,i) = sort(abs(eig(char)));
- ph(:,i) = sort(180./pi*imag(log(eig(char))));
- end
- end
- else
- for i=1:length(s)
- if isempty(invflag),
- cgg(:,i) = sort(abs(eig(d)));
- ph(:,i) = sort(180./pi*imag(log(eig(d))));
- else
- cgg(:,i) = sort(abs(eig(inv(d))));
- ph(:,i) = sort(180./pi*imag(log(eig(inv(d)))));
- end
- end
- end
-
- % If no left hand arguments then plot graph.
- if nargout==0
- subplot
- subplot(211)
- semilogx(w,20*log10(cgg),w,zeros(1,length(w)),'w:')
- ylabel('Char. Gain - dB')
- semilogx(w,ph,w,zeros(1,length(w)),'w:')
- xlabel('Frequency (rad/sec)')
- ylabel('Char. Phase - deg')
- return % Suppress output
- end
- cg = cgg;
-