home *** CD-ROM | disk | FTP | other *** search
- function [p1,p2,lamp,perr,wellposed,p] = daresolv(A,B,Q,R,Type)
- %
- % [P1,P2,LAMP,PERR,WELLPOSED,P] = DARESOLV(A,B,Q,R,TYPE) computes the
- % solution to the discrete algebraic Riccati equation
- % -1
- % A'PA - P - A'PB(R+B'PB) B'PA + Q = 0
- %
- % based on the "Type" one selects:
- %
- % Type = 'eigen' ---- Eigenstructure approach
- %
- % Type = 'Schur' ---- Schur vector approach
- %
- % Outputs: P = P2/P1 riccati solution
- % [P1;P2] stable eigenspace of hamiltonian matrix
- % LAMP closed loop eigenvalues
- % PERR residual error matrix
- % WELLPOSED = 'TRUE ' if hamiltonian has no imaginary-axis
- % eigenvalues, otherwise 'FALSE'
-
- % R. Y. Chiang & M. G. Safonov 2/88
- % Copyright (c) 1988 by the MathWorks, Inc.
- % All Rights Reserved.
-
- wellposed='TRUE '; %initialize
- if nargin == 3
- Type = 'eigen';
- end
- %
- [n,n] = size(A);
- %
- % ------ If A is stable and Q is zero, p2 = zero(n), p1 = eye(n)
- %
- lamA = eig(A);
- ind = find(lamA>0);
- if (sum(ind) == 0) & (norm(q,'fro') == 0)
- p2 = zeros(n); p1 = eye(n);
- p = p2; perr = p2;
- return
- end
- %
- RR = B/R*B';
- ham = [A+RR/A'*Q -RR/A';-A'\Q inv(A')];
- %
- % ------ Eigenstructure approach:
- %
- if Type == 'eigen'
- [v,d] = reig(ham,2);
- if rank(v) < 2*n
- Type = 'Schur';
- end
- p1 = v(1:n,1:n);
- p2 = v((n+1):(2*n),1:n);
- end
- %
- % ------ Schur vector approach:
- %
- if Type == 'Schur'
- [v,t,m,swap] = cschur(ham,6);
- vv = [real(v(:,1:m)) imag(v(:,1:m))];
- [vh,rh] = qr(vv);
- p1 = vh(1:n,1:n);
- p2 = vh(n+1:2*n,1:n);
- end
- %
- P = real(p2/p1);
- %
- perr = A'*P*A-P-A'*P*B/(R+B'*P*B)*B'*P*A+Q;
- %
- % ------ Check jw-axis roots:
- %
- lamp = eig(A-B/(R+B'*P*B)*B'*P'*A);
- %
- if max(abs(lamp)) > 1-1.e-8
- wellposed='FALSE';
- end
- %
- % ------- End of DARESOLV.M ---- % RYC/MGS %