home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=56 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 1 0 1 13
- a1,12,10,11
- BODE PLOTS
- .TXT 2 10 4 63
- a4,63,61,214
- This document examines the dynamic response of a second-order
- system, and presents it in the form of a Bode plot. The
- results demonstrate how to use the Laplace domain and
- semi-log and log-log plots in MathCAD.
- .TXT 5 -10 1 10
- a1,10,8,9
- Example:
- .TXT 2 10 2 52
- a2,51,54,66
- First, define resonant frequency, ▀, and damping
- coefficient, α:
- .EQN 3 0 4 9
- α:\2/2
- .EQN 1 20 1 15
- ▀:10*hertz
- .TXT 4 -20 1 41
- a1,40,38,39
- The second order system is defined as:
- .EQN 2 0 5 27
- f(s):▀^2/(s^2+2*α*▀*s+▀^2)
- .EQN 7 0 1 9
- n:50
- .EQN 0 20 1 12
- i:0;n
- .TXT 2 -20 3 61
- a3,60,58,158
- We will be working with a system with resonant frequency
- 10 rad/sec, so the minimum and maxumum frequency of
- interest for plotting are 1 and 100 rad/sec.
- .EQN 4 0 1 10
- min:1
- .EQN 0 20 1 12
- max:100
- .TXT 2 -20 3 58
- a3,58,56,124
- r is a log ratio of maximum and minimum frequencies. The
- values of s computed below will be equally spaced on a
- log plot.
- .EQN 4 0 3 14
- r:ln(max/min)
- .EQN 4 0 5 22
- s[i:min*e^(i*r/(n))*hertz
- .TXT 6 -10 1 20
- a1,20,18,19
- Global definitions
- .EQN 2 10 1 10
- sec~1t
- .EQN 0 20 3 13
- hertz~(2*π)/sec
- .EQN 0 20 3 11
- deg~π/180
- .EQN 4 -40 1 37
- Φ(Θ)~angle(Re(Θ),Im(Θ))-360*deg
- .TXT 3 -10 1 1
- x1,1,0,0
- .TXT 2 30 1 34
- a1,34,32,33
- Bode Plot of Second Order System
- .EQN 2 -25 17 73
- 10&10^-2&|f(s[i*1j){67,66,15,60,O}@10^2*hertz&1*hertz&s[i
- .TXT 18 20 1 36
- a1,36,34,35
- Phase angle of second order system
- .EQN 2 -20 15 74
- 0*deg&-180*deg&Φ(f(s[i*1j)){2,194,13,60,l}@10^2*hertz&10^0*hertz&s[i
- .EQN 17 -5 2 19
- Θ[i:Φ(f(s[i*1j))
- .TXT 0 23 1 34
- a1,33,31,32
- Nyquist Plot of system function
- .EQN 3 -23 2 20
- Mag[i:|f(s[i*1j)
- .EQN 0 30 14 51
- 1&-1&-sin(Θ[i)*Mag[i{2,2,12,35,l}@1&-1&cos(Θ[i)*Mag[i
-