home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!tcsi.com!iat.holonet.net!news.cerf.net!usc!howland.reston.ans.net!bogus.sura.net!udel!sbcs.sunysb.edu!hanche
- From: hanche@ams.sunysb.edu (Harald Hanche-Olsen)
- Subject: Re: Frobenius Thm. on real dision algebras
- In-Reply-To: Melih Sener's message of Monday, 25 Jan 1993 14: 09:41 TUR
- Message-ID: <HANCHE.93Jan27141930@ptolemy.ams.sunysb.edu>
- Sender: usenet@sbcs.sunysb.edu (Usenet poster)
- Nntp-Posting-Host: ptolemy.ams.sunysb.edu
- Organization: University at Stony Brook, NY
- References: <93025.140941E62802@TRMETU.BITNET>
- Date: Wed, 27 Jan 1993 19:19:30 GMT
- Lines: 29
-
- >>>>> In article <93025.140941E62802@TRMETU.BITNET>, Melih Sener <E62802@TRMETU.BITNET> writes:
-
- Melih> As far as I know there is a theorem due to Frobenius, which
- Melih> states that the only associative divison algebras over real numbers
- Melih> are complex numbers and quaternions (if you drop the requirement
- Melih> of associativity octonions are also added to this list.)
-
- Melih> Here are my questions...
- Melih> 1- Where can I find an explicit proof of this and related
- Melih> theorems? (In Porteus' (Topological Geometry) , there is some
- Melih> info about the subject but if there other sources, I'd like to
- Melih> know them.)
-
- begin unashamed plug alert:
-
- Author: Hanche-Olsen, Harald and Erling Stoermer.
- Title: Jordan operator algebras
- Published: Boston : Pitman Advanced Pub. Program, 1984.
-
- Look at Theorem 2.2.6.
-
- end unashamed plug alert.
-
- Melih> 2- Is this theorem valid only for finite dimensional case?
- Melih> (i.e. Is there an infinite dimensional real divison algebra?)
-
- The rational functions form a field. It's clearly infinite dimensional.
-
- - Harald
-