home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math:18660 sci.crypt:7098
- Newsgroups: sci.math,sci.crypt
- Path: sparky!uunet!spool.mu.edu!agate!linus!linus.mitre.org!gauss!bs
- From: bs@gauss.mitre.org (Robert D. Silverman)
- Subject: Factoring Bibliography
- Message-ID: <1993Jan22.171847.7298@linus.mitre.org>
- Sender: news@linus.mitre.org (News Service)
- Nntp-Posting-Host: gauss.mitre.org
- Organization: Research Computer Facility, MITRE Corporation, Bedford, MA
- Date: Fri, 22 Jan 1993 17:18:47 GMT
- Lines: 168
-
- Factoring and Primality Testing Bibliography
- --------------------------------------------
-
- General References
- ------------------
-
- (1) Knuth Vol. 2 Chapter 4
-
- (2) David Bressoud
- Factoring and Primality Testing
- Springer-Verlag ISBN 0-387-97040-1 1990
-
- This is the most recent book on the subject. It does not cover
- the Cohen-Lenstra-Bosma algorithm or the Number Field Sieve.
- It is quite good.
-
- (3) Hans Riesel
- Prime Numbers and Computer Methods for Factorization
- Birkhauser ISBN 0-8176-3291-3 1985
-
-
- (4) Brillhart, Lehmer, Selfridge, Tuckerman, & Wagstaff Jr.
- Factorization of b^n +/-1 for b = 2,3,5,6,7,10,11,12 up
- to high powers
- Contemporary Mathematics Vol 22. American Math. Society
- ISBN 0-8218-5078-4 (2nd ed.) 1987
-
- This has an extensive bibliography.
-
- Primality Testing
- -----------------
-
- (1) Probable prime methods
-
- The subject is well-covered in Bressoud's and Riesel's books.
- You should also read:
-
- (a) Brillhart, Lehmer, & Selfridge
- New Primality Criteria and factorizations of 2^n +/- 1.
- Math. Comp. Vol 29 1975, pp 620-647
-
- (b) Pomerance, Selfridge, & Wagstaff Jr.
- The pseudoprimes to 25*10^9
- Math. Comp. Vol 35 1980 pp. 1003-1026
-
- (2) Lucas-Lehmer methods and extensions
-
- (a) H.C. Williams & J.S. Judd
- Determination of the primality of N by using factors of N^2 +/- 1
- Math. Comp. Vol 30, 1976, pp 157-172
-
- Some algorithms for prime testing using generalized Lehmer functions
- Math. Comp. Vol 30, 1976 pp. 867-886
-
- (b) H.C. Williams & R. Holte
- Some observations on primality testing
- Math. Comp. Vol 32, 1978, pp. 905-917
-
- (3) Cohen-Lenstra-Bosma cyclotomic ring methods
-
- (a) Adelman, Pomerance, & Rumely
- On distinguishing prime numbers from composite numbers
- Ann. of Math. Vol 117, 1983, pp. 173-206
-
- (b) H. Cohen & A. Lenstra
- Implementation of a new primality test
- Math. Comp. Vol 48, 1987, pp. 103-121
-
- (c) H. Cohen & H. Lenstra Jr.
- Primality testing and Jacobi sums
- Math. Comp. Vol 42, 1984, pp. 297-330
-
- The most comprehensive work is: [N.B. 300 pages with lengthy bibliography]
-
- (d) W. Bosma & M. van der Hulst
- Primality Testing with Cyclotomy
- Thesis, University of Amsterdam Press.
-
-
- (4) Atkin-Morain-Goldwasser elliptic curve methods
-
- The definitive work to date is:
-
- (a) F. Morain
- Implementation of the Goldwasser-Killian-Atkin primality testing algorithm
- Report, University of Limoges, Project Algo, 1988
-
- This too has an extensive bibliography.
-
-
- Factoring
- ---------
-
- (1) Pollard P+/-1 , Pollard Rho and Elliptic Curve Methods
-
- The most comprehensive and best paper to date is:
-
- (a) P. Montgomery
- Speeding the Pollard and elliptic curve methods of factorization
- Math. Comp. Vol. 48, 1987, pp. 243-265
-
- See also
-
- (b) P. Montgomery & R. Silverman
- An FFT extension to the P-1 factoring algorithm
- Math. Comp. Vol. 54, 1990, pp. 839-854
-
- (c) P. Montgomery
- An FFT extension of the elliptic curve method of factorization
- Doctoral Dissertation, UCLA, 1992
-
- (d) R. Silverman & S. Wagstaff Jr.
- A practical analysis of the elliptic curve factoring algorithm
- Math. Comp. (to appear July 1993)
-
- (2) CFRAC
-
- (a) J. Brillhart & M. Morrison
- A Method of Factoring and the factorization of F7
- Math. Comp. Vol 29, 1975 pp. 183-205
-
- (3) Quadratic Sieve
-
- (a) R. Silverman
- The Multiple Polynomial Quadratic Sieve
- Math. Comp. Vol 48, 1987, pp. 329-339
-
- (b) T. Caron & R. Silverman
- Parallel implementation of the quadratic sieve
- J. Supercomputing, Vol. 1, 1988 pp. 273-290
-
- (4) Number Field Sieve
-
- (a) A. Lenstra, H. Lenstra Jr., M. Manasse, & J. Pollard
- The Number Field Sieve
- Proc. 1990 ACM STOC Conf.
-
- (b) J. Buhler, H. Lenstra, & C. Pomerance
- Factoring integers with the number field sieve
- Preprint 1992
-
- (5) Class Group & related methods
-
- (a) C.P. Schnorr & H. Lenstra Jr.
- A Monte-Carlo factoring algorithm with linear storage
- Math. COmp. Vol 43, 1984, pp. 289-311
-
- (b) D. Shanks
- Class Number, A theory of factorization and genera
- Proc. Symp. Pure Math. Vol 20 , 1970 pp 415-440
-
- (6) Cyclotomic field methods
-
- (a) E. Bach & J. Shallit
- Factoring with Cyclotomic Polynomials
- Math. Comp. Vol. 52, 1989, pp. 201-218
-
-
- (7) General Approach
-
- (a) J. Brillhart, P. Montgomery, & R. Silverman
- Tables of factorizations of Fibonacci and Lucas Numbers
- Math. Comp. Vol. 50, 1988, pp. 251-260
- --
- Bob Silverman
- These are my opinions and not MITRE's.
- Mitre Corporation, Bedford, MA 01730
- "You can lead a horse's ass to knowledge, but you can't make him think"
-