home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!stanford.edu!nntp.Stanford.EDU!ilan
- From: ilan@leland.Stanford.EDU (ilan vardi)
- Subject: Re: Compositum of quadratic fields
- Message-ID: <1993Jan22.091011.22652@leland.Stanford.EDU>
- Sender: news@leland.Stanford.EDU (Mr News)
- Organization: DSG, Stanford University, CA 94305, USA
- References: <1j4mh2INN2t3@uwm.edu> <1993Jan18.044419.26095@ariel.ec.usf.edu>
- Date: Fri, 22 Jan 93 09:10:11 GMT
- Lines: 22
-
- In article <1993Jan18.044419.26095@ariel.ec.usf.edu> eclark@gauss.math.usf.edu. (Edwin Clark) writes:
- >In article <1j4mh2INN2t3@uwm.edu> litow@csd4.csd.uwm.edu (Bruce E Litow) writes:
- >>If p_1,...,p_n are distinct primes, what is a good upper bound on
- >>the degree of Q(sqrt(p_1),...,sqrt(p_n))? Clearly one can get a
- >>bound via cyclotomic extensions but that seems horrendous, or is
- >>it best possible?
- >>
- >The exact degree is 2^n. See the Monthly article by RL Roth
- >"On extensions of Q by square roots", vol 78 (4) 1971
- >pp 392-393.
- >
-
- It was studied by Swinnerton-Dyer, who showed that the minimal polynomial
- is simply
-
- product (x (+ or -) sqrt(2) (+ or -) sqrt(3) ... (+ or -) sqrt(p_r))
-
- where the product is over all 2^r choices of sign. Here is a Mathematica
- implementation
-
- SwinnertonDyerP[n_, x_]:=
- Fold[Expand[(#1 /. x->x+#2) (#1 /. x->x-#2)]&, x, Sqrt[Prime[Range[n]]]]
-