home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!ub!penny!mary.cs.fredonia.edu!kwong
- From: kwong@mary.cs.fredonia.edu (Harris Kwong)
- Newsgroups: sci.math
- Subject: Re: Binomial coefficient modulo prime power-- looking for a reference.
- Message-ID: <1993Jan21.152802.12029@penny.cs.fredonia.edu>
- Date: 21 Jan 93 15:28:02 GMT
- References: <1993Jan20.215654.20548@midway.uchicago.edu>
- Sender: news@penny.cs.fredonia.edu (News Administrator)
- Organization: Math / CS, State Univ. of N. Y. College at Fredonia
- Lines: 41
- X-Newsreader: Tin 1.1 PL3
-
- tsai@cs.uchicago.edu (Shi-Chun Tsai) writes:
- : Define an integer function f(i) = i \choose k mod p^a, where
- : i ranges over non-negative integers, k and a are any positive integers,
- : and p is a prime number. Then it is not hard to prove that f is a
- : periodic function with period p^{\lfloor log_p k \rfloor + a}.
- :
- : Actually, it can be generalized for modulo any composite number by using
- : the Chinese Remainder Theorem. I believe this has been proved for a while,
- : but I couldn't find a reference for it. Could anyone show me a pointer?
- : Thanks in advance.
- :
- : Shi-Chun
-
- It is indeed quite well-known. Zabek [5] was probably the first one who
- published the result. Applying Vandermonde's convolution, Trench [4]
- obtained identical period. Fray [1] extended the result to q-binomial
- coefficients. Recently, Kwong [2,3] obtained the same results by
- studying generating functions.
-
- 1. R.D. Fray, Congruence properties of ordinary and q-binomial
- coefficients, Duke Math. J. 34 (1967), 467--480.
-
- 2. Y.H.H. Kwong, Minimum periods of binomial coefficients modulo M,
- Fibonacci Quarterly 27 (1989), 348--351.
-
- 3. Y.H.H. Kwong, Periodicities of a class of infinite integer sequences
- modulo M, J. Number Theory 31 (1989), 64--79.
-
- 4. W.F. Trench, On the periodicities of certain sequence of residues,
- Amer. Math. Monthly 67 (1960), 652--656.
-
- 5. S. Zabek, Sur la p\'eriodicit\'e modulo m des suites de nombres
- {n\choose k}, Ann. Univ. Mariae Curie-Sklodowska A10 (1956), 37--47.
-
- --
- Harris Kwong
-
- Dept. of Math. & Comp. Sci.
- SUNY College at Fredonia
- Fredonia, NY 14063
- Email: kwong@mary.cs.fredonia.edu
-