home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!stanford.edu!nntp.Stanford.EDU!ilan
- From: ilan@leland.Stanford.EDU (ilan vardi)
- Subject: Re: Non-number theoretcial proofs in number theory
- Message-ID: <1993Jan21.130459.18717@leland.Stanford.EDU>
- Sender: news@leland.Stanford.EDU (Mr News)
- Organization: DSG, Stanford University, CA 94305, USA
- References: <C15H03.A3q@cs.bham.ac.uk>
- Date: Thu, 21 Jan 93 13:04:59 GMT
- Lines: 16
-
- In article <C15H03.A3q@cs.bham.ac.uk> ard@cs.bham.ac.uk (Antoni Diller) writes:
- >It's years since I've done any proper maths, but what I'm after are
- >examples of proofs of statements about the natural numbers or integers
- >that use ideas and methods external to number theory, like for example
- >results from the theory of complex numbers. Ideally I'd like an example
-
- If p=3 (mod 4) is prime, then
-
- 1*(1/p) + 2*(2/p) + 3*(3/p) + ... + (p-1)*((p-1)/p) < 0
-
- where (a/p) = 1 if there is an x such that x^2 = a (mod p), and -1
- if no such x exists.
-
-
-
-
-