home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!uwm.edu!psuvax1!hsdndev!husc-news.harvard.edu!husc.harvard.edu!kedlaya
- From: kedlaya@husc8.harvard.edu (Kiran Kedlaya)
- Newsgroups: sci.math
- Subject: Re: Need: prpndcular dist from pt to line
- Message-ID: <kedlaya.725687324@husc.harvard.edu>
- Date: 30 Dec 92 03:48:44 GMT
- References: <1992Dec29.210554.5350@seas.gwu.edu>
- Lines: 15
- Nntp-Posting-Host: husc8.harvard.edu
-
- If you can express the line in the form ax + by + c = 0,
- then the distance from the point (p, q) to the line is just
- |ap + bq + c| divided by the square root of a^2 + b^2.
-
- More generally, in n-space the distance from the point
- (z_1, ..., z_n) to the line a_1x_1 + ... + a_nx_n + c = 0
- is just |a_1z_1 + ... + a_nz_n + c| divided by the square
- root of a_1^2 + ... + a_n^2.
-
- Anyone got a quick proof of this?
-
- Kiran Kedlaya
- Harvard University
- "Lo \'unico peor que la mala salud es la mala fama."
- -Gabriel Garc\'ia M\'arquez, "El amor en los tiempos del c\'olera"
-