home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!moe.ksu.ksu.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dbradley
- From: dbradley@symcom.math.uiuc.edu (David Bradley)
- Subject: Re: G=Ab Gp. H<G => G/H embedds in G, don't use Hom(G,Q/Z)
- References: <Bzn3GF.Gt@news.cso.uiuc.edu>
- Message-ID: <Bzn3tn.oB@news.cso.uiuc.edu>
- Sender: usenet@news.cso.uiuc.edu (Net Noise owner)
- Organization: Math Dept., University of Illinois at Urbana/Champaign
- Date: Tue, 22 Dec 1992 02:48:58 GMT
- Lines: 7
-
- In article <Bzn3GF.Gt@news.cso.uiuc.edu> dbradley@symcom.math.uiuc.edu (David Bradley) writes:
- >Let G be an abelian group and H a subgroup. Then G has a subgroup
- >isomorphic to G/H. I managed to prove this using the character group
-
- Of course, that should read "Let G be a _finite_ abelian group...
-
- -D.M.Bradley
-