home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!haven.umd.edu!darwin.sura.net!spool.mu.edu!sol.ctr.columbia.edu!mary.fordham.edu!nissim
- From: nissim@mary.fordham.edu (Leonard J. Nissim)
- Subject: Re: Help wanted with equation !
- References: <1992Dec21.155633.14071@fwi.uva.nl>
- Sender: nobody@ctr.columbia.edu
- Organization: Fordham University
- Date: Mon, 21 Dec 1992 16:58:00 GMT
- News-Software: VAX/VMS VNEWS 1.41
- Message-ID: <21DEC199212585755@mary.fordham.edu>
- Distribution: usa
- X-Posted-From: mary.fordham.edu
- NNTP-Posting-Host: sol.ctr.columbia.edu
- Lines: 34
-
- In article <1992Dec21.155633.14071@fwi.uva.nl>, schavema@fwi.uva.nl (John Schavemaker) writes...
- > Hi,
- >
- > Does anyone know how to solve the following equation:
- >
- > 7 * y + 3 = x * x
- >
- > Both the variables y and x are integers. Otherwise stated:
- > Can a square be the addition of a multiple of seven and
- > three ? Any help appreciated, e-mail prefered.
- >
- >
- > John Schavemaker
- >
- >---
- >John Schavemaker
- >schavema@fwi.uva.nl
- >--
- >John Schavemaker
- >schavema@fwi.uva.nl
-
- There are no solutions to the equation.
- Brute force proof:
- Modulo 7, note that 0*0=0, 1*1=1, 2*2=4, 3*3=2, 4*4=2, 5*5=4, and 6*6=1.
- So 3 is not a square in Z/7Z.
-
- For an elegant proof (or the solution in general), look in a number
- theory book under "quadratic residues".
-
- -------------------------------------------------------------------------------
- Leonard J. Nissim (nissim@mary.fordham.edu)
- Disclaimer: "I speak only for myself."
- -------------------------------------------------------------------------------
-
-