home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: rec.puzzles
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!swrinde!news.dell.com!natinst.com!cs.utexas.edu!wotan.compaq.com!twisto.eng.hou.compaq.com!solo.eng.hou.compaq.com!costley
- From: costley@solo.eng.hou.compaq.com (Brett Costley)
- Subject: Re: simple number puzzle
- Message-ID: <1992Dec22.172338.16381@twisto.eng.hou.compaq.com>
- Sender: news@twisto.eng.hou.compaq.com (Netnews Account)
- Organization: Compaq Computer Corp.
- References: <1992Dec21.195038.28106@Csli.Stanford.EDU> <1992Dec22.010621.19817@dartvax.dartmouth.edu>
- Date: Tue, 22 Dec 1992 17:23:38 GMT
- Lines: 19
-
- In article <1992Dec22.010621.19817@dartvax.dartmouth.edu> J.Theodore.Schuerzinger@dartmouth.edu (J. Theodore Schuerzinger) writes:
- >Yuzuru Hiraga writes:
- >
- >A simple number puzzle for Christmas...
- ># sorry if this is in the FAQ: ours just expired.
- >
- >What positive integer cannot be expressed as a sum of 2 or more
- >consecutive integers?
- >
- >I believe the answer is 2^n power (where n is an integer) can't be
- >expressed as the sum of consecutive integers, but all other numbers
- >can.
- >
- "proof" deleted
-
- 2^0 = 1 = 0+1
- 2^1 = 2 = -1+0+1+2
- 2^2 = 4 = (-3)+(-2)+(-1)+0+1+2+3+4
- 2^n = [-(n-1)]+...+0+...+n
-