home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: comp.speech
- Path: sparky!uunet!munnari.oz.au!spool.mu.edu!umn.edu!lynx!nmsu.edu!opus!ted
- From: ted@nmsu.edu (Ted Dunning)
- Subject: Re: Fundamental Frequencies of the Musical Notes
- In-Reply-To: rsl11@kuhub.cc.ukans.edu's message of 1 Jan 93 10:54:01 CST
- Message-ID: <TED.93Jan1134723@lole.nmsu.edu>
- Sender: usenet@nmsu.edu
- Reply-To: ted@nmsu.edu
- Organization: Computing Research Lab
- References: <1993Jan1.105401.46023@kuhub.cc.ukans.edu>
- Date: Fri, 1 Jan 1993 20:47:23 GMT
- Lines: 59
-
-
- In article <1993Jan1.105401.46023@kuhub.cc.ukans.edu> rsl11@kuhub.cc.ukans.edu writes:
-
- I would like to know what the fundamental frequencies of the musica
- notes are if someone is aware of them. Tha is what frequencies do they
- correspond to the notes
-
- do, re, mi, fa, sol, la, si, do.
- or
- C, D, E, F, G, A, B, C
-
-
- the simplest approximation is that middle c has a frequency of 256
- hertz and each half step results in change in frequency by a factor of
- 2^(1/12).
-
- thus, you can compute a table using bc
-
- > bc -l
- f = 256
- x = e(l(2)/12)
- f
- for (i=0;i<12;i++) {
- f *= x;
- f;
- }
-
- 256.00000000000000000000 < c
- 271.22255215597958772480 < c#
- 287.35028436719948324056 < d
- 304.43702144069659306947 < d#
- 322.53978877308753016598 < e
- 341.71900266752879737759 < f
- 362.03867196751233246895 < f#
- 383.56661168043046366260 < g
- 406.37466930385906550010 < g#
- 430.53896460990184598863 < a
- 456.14014368785372397602 < a#
- 483.26364809302707022125 < b
- 511.99999999999999993134 < c
-
- (i added the labels and separated out the output).
-
- if you note, this scale is pretty close to well tempered, but the
- intervals a little bit off so that the fifth:
-
- 383.56661168043046366260/256 = 1.49830707687668149868
-
- instead of 1.5 and the fourth
-
- 341.71900266752879737759/256 = 1.33483985417003436475
-
- instead of 1.3333...
-
- these discrepancies can make chords sound a little off, but on the
- other hand, all the chords can be transposed without changing how they
- sound.
-
- have fun with this.
-