home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.physics:18967 sci.math:15049
- Newsgroups: sci.physics,sci.math
- Path: sparky!uunet!van-bc!cs.ubc.ca!destroyer!gumby!yale!yale.edu!jvnc.net!darwin.sura.net!Sirius.dfn.de!news.belwue.de!eratu.rz.uni-konstanz.de!nyx.uni-konstanz.de!phfrom
- From: phfrom@nyx.uni-konstanz.de (Hartmut Frommert)
- Subject: Re: Covariant vs. Lie Derivative in Gen. Rel.?
- Message-ID: <phfrom.381@nyx.uni-konstanz.de>
- Sender: usenet@eratu.rz.uni-konstanz.de
- Organization: Dept. of Physics, University of Constance
- References: <1992Nov11.062853.22717@galois.mit.edu> <1992Nov12.172748.16273@kakwa.ucs.ualberta.ca> <1992Nov13.213840.10075@galois.mit.edu> <1e2gs5INNaq5@drb-mathsun1.usc.edu>
- Date: Mon, 16 Nov 1992 15:30:05 GMT
- Lines: 23
-
- :-))
-
- glezen@drb-mathsun1.usc.edu (Paul Glezen) writes:
-
- > "What is the difference between covariant derivative and the Lie
- ^^^^^ D(u,v) ^^^ L(u,v)
- > derivative?"
-
- As you state,
- L(u,v) == [u,v]
- On the other hand,
- D(u,v) - D(v,u) = S(u,v)+[u,v] = S(u,v)+L(u,v)
- where S is the torsion 2-form. Therefore the *difference* between D and L
- is given by
- D(u,v)-L(u,v)=D(v,u)+S(u,v)
- or in a torsion-free spacetime by
- D(v,u),
- i.e. the covariant derivative with respect to v of u.
-
- :-))
- Hartmut Frommert <phfrom@nyx.uni-konstanz.de>
- Dept of Physics, Univ of Constance, P.O.Box 55 60, D-W-7750 Konstanz, Germany
- -- Eat whale killers, not whales --
-