home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!news.centerline.com!noc.near.net!news.Brown.EDU!qt.cs.utexas.edu!yale.edu!spool.mu.edu!umn.edu!doug.cae.wisc.edu!zazen!schaefer.math.wisc.edu!mueller
- From: mueller@schaefer.math.wisc.edu (Carl Douglas Mueller)
- Subject: Re: Geometrical parking problem.
- Message-ID: <1992Nov18.143131.25971@schaefer.math.wisc.edu>
- Reply-To: mueller@schaefer.UUCP (Carl Douglas Mueller)
- Organization: Univ. of Wisconsin Dept. of Mathematics
- References: <1992Nov17.225821.6579@augean.eleceng.adelaide.edu.AU> <1992Nov18.101107.29182@infodev.cam.ac.uk>
- Date: Wed, 18 Nov 92 14:31:31 GMT
- Lines: 18
-
- In article <1992Nov18.101107.29182@infodev.cam.ac.uk> rgep@emu.pmms.cam.ac.uk (Richard Pinch) writes:
- >In article <1992Nov17.225821.6579@augean.eleceng.adelaide.edu.AU>
- >dabbott@augean.eleceng.adelaide.edu.AU (Derek Abbott) writes:
- >>
- >>A car of length L reverses into a parking space without touching the kerb.
- >>Has anyone calculated the minimum theoretical length of the parking space?
- >
- >Yes, it's the length of the car. The commutator of two rotations is
- >a translation, so you can drive sideways by making very small moves of
- >the form LRLR.
-
- Actually, there is no MINIMUM. The length of the car is not quite enough,
- but the length of the car plus epsilon (for any positive epsilon) is enough.
- >
- >Richard Pinch
- >
-
- Carl Mueller (mueller@math.wisc.edu)
-