home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!charon.amdahl.com!pacbell.com!ames!saimiri.primate.wisc.edu!zaphod.mps.ohio-state.edu!sdd.hp.com!cs.utexas.edu!qt.cs.utexas.edu!news.Brown.EDU!noc.near.net!news.cs.brandeis.edu!binah.cc.brandeis.edu!PALAIS
- From: palais@binah.cc.brandeis.edu
- Subject: Re: Covariant & Lie Derivative
- Message-ID: <1992Nov17.185237.20054@news.cs.brandeis.edu>
- Sender: news@news.cs.brandeis.edu (USENET News System)
- Reply-To: palais@binah.cc.brandeis.edu
- Organization: Brandeis University
- Date: Tue, 17 Nov 1992 18:52:37 GMT
- Lines: 24
-
- I posted this message a little while ago, in response to message
- 15638 from phfrom@nyx.uni-konstanz.de (Hartmut Frommert), but a
- transmission problem completely garbled it and I'm trying again.
- -----
- > rscott@libws3.ic.sunysb.edu (Robert Scott) writes:
-
- >>ISN'T IT EASY TO SHOW THAT THE LIE ALGEBRA OF SYMMETRIES OF AN
- >>AFFINE CONNECTION ON A CONNECTED FINITE-DIMENSIONAL MANIFOLD IS
- >>FINITE-DIMENSIONAL? THUS THE LIE ALGEBRA OF INFINITESIMAL
- >>SYMPLECTOMORPHISMS OF A SYMPLECTIC MANIFOLD IS FAR TOO BIG TO
- >>PRESERVE AN AFFINE CONNECTION.
-
- >You confuse me a bit :)
-
- >If I understand right, the covariant derivative must only preserve the
- >symplectic metric j with components
-
- > j_{ab} = j_{[ab]} = - j_{ba} ,
-
- >not the set of all symplectic transformations, to obtain a metricity
- >condition analogous to the Riemannian: There the Levi-Civita connection
- >only leaves (pseudo)-orthogonal g invariant, not all elements of the
- >Lorentz group. The symplectic metricity condition reads explicitely
-
-