home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.astro
- Path: sparky!uunet!wupost!uwm.edu!rpi!usenet.coe.montana.edu!news.u.washington.edu!news.u.washington.edu!ethanb
- From: ethanb@ptolemy.astro.washington.edu (Ethan Bradford)
- Subject: Re: Distance of horizon
- In-Reply-To: ethanb@ptolemy.astro.washington.edu's message of Thu, 19 Nov 1992 20:26:24 GMT
- Message-ID: <ETHANB.92Nov19124858@ptolemy.astro.washington.edu>
- Lines: 6
- Sender: news@u.washington.edu (USENET News System)
- Organization: U. of Washington
- References: <lglhj3INNb0c@appserv.Eng.Sun.COM> <1992Nov19.021430.13833@sfu.ca>
- <ETHANB.92Nov19004023@ptolemy.astro.washington.edu>
- <1992Nov19.181159.25667@sfu.ca>
- <ETHANB.92Nov19122624@ptolemy.astro.washington.edu>
- Date: Thu, 19 Nov 1992 20:48:58 GMT
-
- In article <ETHANB.92Nov19122624@ptolemy.astro.washington.edu> ethanb@ptolemy.astro.washington.edu (Ethan Bradford) writes:
- > d \approx sqrt(2Rh) ( 1 - 5/12 h/R + 43/80 (h/R)^2)
-
- Though I'm sure you all noticed my error right away, let me say that
- that formula should read:
- d \approx sqrt(2Rh) ( 1 - 5/12 h/R + 43/160 (h/R)^2)
-