home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!charon.amdahl.com!pacbell.com!decwrl!sun-barr!cs.utexas.edu!wupost!usc!hacgate!rigel!abirenbo
- From: abirenbo@rigel.cel.scg.hac.com (Aaron Birenboim)
- Newsgroups: comp.compression
- Subject: Re: Math Question
- Message-ID: <24017@hacgate.SCG.HAC.COM>
- Date: 16 Nov 92 15:41:22 GMT
- References: <24005@hacgate.SCG.HAC.COM>
- Sender: news@hacgate.SCG.HAC.COM
- Organization: Hughes Aircraft Colorado Engineering Labs
- Lines: 39
-
- In article <24005@hacgate.SCG.HAC.COM> abirenbo@rigel.cel.scg.hac.com (Aaron Birenboim) writes:
- >
- >While working on an optimization problem related to compression
- >I bumped into the following nasty little problem :
- >
- > evaluate:
- >
- > { [(i+1)q }
- > d { [ }
- > --- { Integral [ (x - (i + 0.5) q)^2 * exp(-c * x) dx }
- > dq { [ }
- > { [i*q }
- >
-
- the answer i was seeking was "Leibnitz rule". its quite useful.
- Patrich smith was kind enough to send me the definition:
-
- / b(y)
- d |
- -- | f(x,y) dx =
- dy |
- / a(y)
-
-
-
- / b(y)
- | d
- | -- f(x,y) dx + b'(y)f(b(y),y) - a'(y)f(a(y),y)
- | dy
- / a(y)
-
- thanks to all those who replied!
-
-
- --
- Aaron Birenboim |
- birenb@hac2arpa.hac.com |
- |
- H (303) 871-8271 |
-