home *** CD-ROM | disk | FTP | other *** search
Text File | 2000-03-15 | 43.2 KB | 1,835 lines |
- #
- # Complex numbers and associated mathematical functions
- # -- Raphael Manfredi Since Sep 1996
- # -- Jarkko Hietaniemi Since Mar 1997
- # -- Daniel S. Lewart Since Sep 1997
- #
-
- require Exporter;
- package Math::Complex;
-
- use 5.005_64;
- use strict;
-
- our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS);
-
- my ( $i, $ip2, %logn );
-
- $VERSION = sprintf("%s", q$Id: Complex.pm,v 1.26 1998/11/01 00:00:00 dsl Exp $ =~ /(\d+\.\d+)/);
-
- @ISA = qw(Exporter);
-
- my @trig = qw(
- pi
- tan
- csc cosec sec cot cotan
- asin acos atan
- acsc acosec asec acot acotan
- sinh cosh tanh
- csch cosech sech coth cotanh
- asinh acosh atanh
- acsch acosech asech acoth acotanh
- );
-
- @EXPORT = (qw(
- i Re Im rho theta arg
- sqrt log ln
- log10 logn cbrt root
- cplx cplxe
- ),
- @trig);
-
- %EXPORT_TAGS = (
- 'trig' => [@trig],
- );
-
- use overload
- '+' => \&plus,
- '-' => \&minus,
- '*' => \&multiply,
- '/' => \÷,
- '**' => \&power,
- '<=>' => \&spaceship,
- 'neg' => \&negate,
- '~' => \&conjugate,
- 'abs' => \&abs,
- 'sqrt' => \&sqrt,
- 'exp' => \&exp,
- 'log' => \&log,
- 'sin' => \&sin,
- 'cos' => \&cos,
- 'tan' => \&tan,
- 'atan2' => \&atan2,
- qw("" stringify);
-
- #
- # Package "privates"
- #
-
- my $package = 'Math::Complex'; # Package name
- my %DISPLAY_FORMAT = ('style' => 'cartesian',
- 'polar_pretty_print' => 1);
- my $eps = 1e-14; # Epsilon
-
- #
- # Object attributes (internal):
- # cartesian [real, imaginary] -- cartesian form
- # polar [rho, theta] -- polar form
- # c_dirty cartesian form not up-to-date
- # p_dirty polar form not up-to-date
- # display display format (package's global when not set)
- #
-
- # Die on bad *make() arguments.
-
- sub _cannot_make {
- die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n";
- }
-
- #
- # ->make
- #
- # Create a new complex number (cartesian form)
- #
- sub make {
- my $self = bless {}, shift;
- my ($re, $im) = @_;
- my $rre = ref $re;
- if ( $rre ) {
- if ( $rre eq ref $self ) {
- $re = Re($re);
- } else {
- _cannot_make("real part", $rre);
- }
- }
- my $rim = ref $im;
- if ( $rim ) {
- if ( $rim eq ref $self ) {
- $im = Im($im);
- } else {
- _cannot_make("imaginary part", $rim);
- }
- }
- $self->{'cartesian'} = [ $re, $im ];
- $self->{c_dirty} = 0;
- $self->{p_dirty} = 1;
- $self->display_format('cartesian');
- return $self;
- }
-
- #
- # ->emake
- #
- # Create a new complex number (exponential form)
- #
- sub emake {
- my $self = bless {}, shift;
- my ($rho, $theta) = @_;
- my $rrh = ref $rho;
- if ( $rrh ) {
- if ( $rrh eq ref $self ) {
- $rho = rho($rho);
- } else {
- _cannot_make("rho", $rrh);
- }
- }
- my $rth = ref $theta;
- if ( $rth ) {
- if ( $rth eq ref $self ) {
- $theta = theta($theta);
- } else {
- _cannot_make("theta", $rth);
- }
- }
- if ($rho < 0) {
- $rho = -$rho;
- $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
- }
- $self->{'polar'} = [$rho, $theta];
- $self->{p_dirty} = 0;
- $self->{c_dirty} = 1;
- $self->display_format('polar');
- return $self;
- }
-
- sub new { &make } # For backward compatibility only.
-
- #
- # cplx
- #
- # Creates a complex number from a (re, im) tuple.
- # This avoids the burden of writing Math::Complex->make(re, im).
- #
- sub cplx {
- my ($re, $im) = @_;
- return __PACKAGE__->make($re, defined $im ? $im : 0);
- }
-
- #
- # cplxe
- #
- # Creates a complex number from a (rho, theta) tuple.
- # This avoids the burden of writing Math::Complex->emake(rho, theta).
- #
- sub cplxe {
- my ($rho, $theta) = @_;
- return __PACKAGE__->emake($rho, defined $theta ? $theta : 0);
- }
-
- #
- # pi
- #
- # The number defined as pi = 180 degrees
- #
- sub pi () { 4 * CORE::atan2(1, 1) }
-
- #
- # pit2
- #
- # The full circle
- #
- sub pit2 () { 2 * pi }
-
- #
- # pip2
- #
- # The quarter circle
- #
- sub pip2 () { pi / 2 }
-
- #
- # deg1
- #
- # One degree in radians, used in stringify_polar.
- #
-
- sub deg1 () { pi / 180 }
-
- #
- # uplog10
- #
- # Used in log10().
- #
- sub uplog10 () { 1 / CORE::log(10) }
-
- #
- # i
- #
- # The number defined as i*i = -1;
- #
- sub i () {
- return $i if ($i);
- $i = bless {};
- $i->{'cartesian'} = [0, 1];
- $i->{'polar'} = [1, pip2];
- $i->{c_dirty} = 0;
- $i->{p_dirty} = 0;
- return $i;
- }
-
- #
- # Attribute access/set routines
- #
-
- sub cartesian {$_[0]->{c_dirty} ?
- $_[0]->update_cartesian : $_[0]->{'cartesian'}}
- sub polar {$_[0]->{p_dirty} ?
- $_[0]->update_polar : $_[0]->{'polar'}}
-
- sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] }
- sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] }
-
- #
- # ->update_cartesian
- #
- # Recompute and return the cartesian form, given accurate polar form.
- #
- sub update_cartesian {
- my $self = shift;
- my ($r, $t) = @{$self->{'polar'}};
- $self->{c_dirty} = 0;
- return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
- }
-
- #
- #
- # ->update_polar
- #
- # Recompute and return the polar form, given accurate cartesian form.
- #
- sub update_polar {
- my $self = shift;
- my ($x, $y) = @{$self->{'cartesian'}};
- $self->{p_dirty} = 0;
- return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
- return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)];
- }
-
- #
- # (plus)
- #
- # Computes z1+z2.
- #
- sub plus {
- my ($z1, $z2, $regular) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- $z2 = cplx($z2) unless ref $z2;
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
- unless (defined $regular) {
- $z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
- return $z1;
- }
- return (ref $z1)->make($re1 + $re2, $im1 + $im2);
- }
-
- #
- # (minus)
- #
- # Computes z1-z2.
- #
- sub minus {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- $z2 = cplx($z2) unless ref $z2;
- my ($re2, $im2) = @{$z2->cartesian};
- unless (defined $inverted) {
- $z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
- return $z1;
- }
- return $inverted ?
- (ref $z1)->make($re2 - $re1, $im2 - $im1) :
- (ref $z1)->make($re1 - $re2, $im1 - $im2);
-
- }
-
- #
- # (multiply)
- #
- # Computes z1*z2.
- #
- sub multiply {
- my ($z1, $z2, $regular) = @_;
- if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
- # if both polar better use polar to avoid rounding errors
- my ($r1, $t1) = @{$z1->polar};
- my ($r2, $t2) = @{$z2->polar};
- my $t = $t1 + $t2;
- if ($t > pi()) { $t -= pit2 }
- elsif ($t <= -pi()) { $t += pit2 }
- unless (defined $regular) {
- $z1->set_polar([$r1 * $r2, $t]);
- return $z1;
- }
- return (ref $z1)->emake($r1 * $r2, $t);
- } else {
- my ($x1, $y1) = @{$z1->cartesian};
- if (ref $z2) {
- my ($x2, $y2) = @{$z2->cartesian};
- return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
- } else {
- return (ref $z1)->make($x1*$z2, $y1*$z2);
- }
- }
- }
-
- #
- # _divbyzero
- #
- # Die on division by zero.
- #
- sub _divbyzero {
- my $mess = "$_[0]: Division by zero.\n";
-
- if (defined $_[1]) {
- $mess .= "(Because in the definition of $_[0], the divisor ";
- $mess .= "$_[1] " unless ($_[1] eq '0');
- $mess .= "is 0)\n";
- }
-
- my @up = caller(1);
-
- $mess .= "Died at $up[1] line $up[2].\n";
-
- die $mess;
- }
-
- #
- # (divide)
- #
- # Computes z1/z2.
- #
- sub divide {
- my ($z1, $z2, $inverted) = @_;
- if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
- # if both polar better use polar to avoid rounding errors
- my ($r1, $t1) = @{$z1->polar};
- my ($r2, $t2) = @{$z2->polar};
- my $t;
- if ($inverted) {
- _divbyzero "$z2/0" if ($r1 == 0);
- $t = $t2 - $t1;
- if ($t > pi()) { $t -= pit2 }
- elsif ($t <= -pi()) { $t += pit2 }
- return (ref $z1)->emake($r2 / $r1, $t);
- } else {
- _divbyzero "$z1/0" if ($r2 == 0);
- $t = $t1 - $t2;
- if ($t > pi()) { $t -= pit2 }
- elsif ($t <= -pi()) { $t += pit2 }
- return (ref $z1)->emake($r1 / $r2, $t);
- }
- } else {
- my ($d, $x2, $y2);
- if ($inverted) {
- ($x2, $y2) = @{$z1->cartesian};
- $d = $x2*$x2 + $y2*$y2;
- _divbyzero "$z2/0" if $d == 0;
- return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
- } else {
- my ($x1, $y1) = @{$z1->cartesian};
- if (ref $z2) {
- ($x2, $y2) = @{$z2->cartesian};
- $d = $x2*$x2 + $y2*$y2;
- _divbyzero "$z1/0" if $d == 0;
- my $u = ($x1*$x2 + $y1*$y2)/$d;
- my $v = ($y1*$x2 - $x1*$y2)/$d;
- return (ref $z1)->make($u, $v);
- } else {
- _divbyzero "$z1/0" if $z2 == 0;
- return (ref $z1)->make($x1/$z2, $y1/$z2);
- }
- }
- }
- }
-
- #
- # (power)
- #
- # Computes z1**z2 = exp(z2 * log z1)).
- #
- sub power {
- my ($z1, $z2, $inverted) = @_;
- if ($inverted) {
- return 1 if $z1 == 0 || $z2 == 1;
- return 0 if $z2 == 0 && Re($z1) > 0;
- } else {
- return 1 if $z2 == 0 || $z1 == 1;
- return 0 if $z1 == 0 && Re($z2) > 0;
- }
- my $w = $inverted ? CORE::exp($z1 * CORE::log($z2))
- : CORE::exp($z2 * CORE::log($z1));
- # If both arguments cartesian, return cartesian, else polar.
- return $z1->{c_dirty} == 0 &&
- (not ref $z2 or $z2->{c_dirty} == 0) ?
- cplx(@{$w->cartesian}) : $w;
- }
-
- #
- # (spaceship)
- #
- # Computes z1 <=> z2.
- # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
- #
- sub spaceship {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
- my $sgn = $inverted ? -1 : 1;
- return $sgn * ($re1 <=> $re2) if $re1 != $re2;
- return $sgn * ($im1 <=> $im2);
- }
-
- #
- # (negate)
- #
- # Computes -z.
- #
- sub negate {
- my ($z) = @_;
- if ($z->{c_dirty}) {
- my ($r, $t) = @{$z->polar};
- $t = ($t <= 0) ? $t + pi : $t - pi;
- return (ref $z)->emake($r, $t);
- }
- my ($re, $im) = @{$z->cartesian};
- return (ref $z)->make(-$re, -$im);
- }
-
- #
- # (conjugate)
- #
- # Compute complex's conjugate.
- #
- sub conjugate {
- my ($z) = @_;
- if ($z->{c_dirty}) {
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake($r, -$t);
- }
- my ($re, $im) = @{$z->cartesian};
- return (ref $z)->make($re, -$im);
- }
-
- #
- # (abs)
- #
- # Compute or set complex's norm (rho).
- #
- sub abs {
- my ($z, $rho) = @_;
- return $z unless ref $z;
- if (defined $rho) {
- $z->{'polar'} = [ $rho, ${$z->polar}[1] ];
- $z->{p_dirty} = 0;
- $z->{c_dirty} = 1;
- return $rho;
- } else {
- return ${$z->polar}[0];
- }
- }
-
- sub _theta {
- my $theta = $_[0];
-
- if ($$theta > pi()) { $$theta -= pit2 }
- elsif ($$theta <= -pi()) { $$theta += pit2 }
- }
-
- #
- # arg
- #
- # Compute or set complex's argument (theta).
- #
- sub arg {
- my ($z, $theta) = @_;
- return $z unless ref $z;
- if (defined $theta) {
- _theta(\$theta);
- $z->{'polar'} = [ ${$z->polar}[0], $theta ];
- $z->{p_dirty} = 0;
- $z->{c_dirty} = 1;
- } else {
- $theta = ${$z->polar}[1];
- _theta(\$theta);
- }
- return $theta;
- }
-
- #
- # (sqrt)
- #
- # Compute sqrt(z).
- #
- # It is quite tempting to use wantarray here so that in list context
- # sqrt() would return the two solutions. This, however, would
- # break things like
- #
- # print "sqrt(z) = ", sqrt($z), "\n";
- #
- # The two values would be printed side by side without no intervening
- # whitespace, quite confusing.
- # Therefore if you want the two solutions use the root().
- #
- sub sqrt {
- my ($z) = @_;
- my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0);
- return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake(CORE::sqrt($r), $t/2);
- }
-
- #
- # cbrt
- #
- # Compute cbrt(z) (cubic root).
- #
- # Why are we not returning three values? The same answer as for sqrt().
- #
- sub cbrt {
- my ($z) = @_;
- return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
- unless ref $z;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
- }
-
- #
- # _rootbad
- #
- # Die on bad root.
- #
- sub _rootbad {
- my $mess = "Root $_[0] not defined, root must be positive integer.\n";
-
- my @up = caller(1);
-
- $mess .= "Died at $up[1] line $up[2].\n";
-
- die $mess;
- }
-
- #
- # root
- #
- # Computes all nth root for z, returning an array whose size is n.
- # `n' must be a positive integer.
- #
- # The roots are given by (for k = 0..n-1):
- #
- # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
- #
- sub root {
- my ($z, $n) = @_;
- _rootbad($n) if ($n < 1 or int($n) != $n);
- my ($r, $t) = ref $z ? @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
- my @root;
- my $k;
- my $theta_inc = pit2 / $n;
- my $rho = $r ** (1/$n);
- my $theta;
- my $cartesian = ref $z && $z->{c_dirty} == 0;
- for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {
- my $w = cplxe($rho, $theta);
- # Yes, $cartesian is loop invariant.
- push @root, $cartesian ? cplx(@{$w->cartesian}) : $w;
- }
- return @root;
- }
-
- #
- # Re
- #
- # Return or set Re(z).
- #
- sub Re {
- my ($z, $Re) = @_;
- return $z unless ref $z;
- if (defined $Re) {
- $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ];
- $z->{c_dirty} = 0;
- $z->{p_dirty} = 1;
- } else {
- return ${$z->cartesian}[0];
- }
- }
-
- #
- # Im
- #
- # Return or set Im(z).
- #
- sub Im {
- my ($z, $Im) = @_;
- return $z unless ref $z;
- if (defined $Im) {
- $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ];
- $z->{c_dirty} = 0;
- $z->{p_dirty} = 1;
- } else {
- return ${$z->cartesian}[1];
- }
- }
-
- #
- # rho
- #
- # Return or set rho(w).
- #
- sub rho {
- Math::Complex::abs(@_);
- }
-
- #
- # theta
- #
- # Return or set theta(w).
- #
- sub theta {
- Math::Complex::arg(@_);
- }
-
- #
- # (exp)
- #
- # Computes exp(z).
- #
- sub exp {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- return (ref $z)->emake(CORE::exp($x), $y);
- }
-
- #
- # _logofzero
- #
- # Die on logarithm of zero.
- #
- sub _logofzero {
- my $mess = "$_[0]: Logarithm of zero.\n";
-
- if (defined $_[1]) {
- $mess .= "(Because in the definition of $_[0], the argument ";
- $mess .= "$_[1] " unless ($_[1] eq '0');
- $mess .= "is 0)\n";
- }
-
- my @up = caller(1);
-
- $mess .= "Died at $up[1] line $up[2].\n";
-
- die $mess;
- }
-
- #
- # (log)
- #
- # Compute log(z).
- #
- sub log {
- my ($z) = @_;
- unless (ref $z) {
- _logofzero("log") if $z == 0;
- return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
- }
- my ($r, $t) = @{$z->polar};
- _logofzero("log") if $r == 0;
- if ($t > pi()) { $t -= pit2 }
- elsif ($t <= -pi()) { $t += pit2 }
- return (ref $z)->make(CORE::log($r), $t);
- }
-
- #
- # ln
- #
- # Alias for log().
- #
- sub ln { Math::Complex::log(@_) }
-
- #
- # log10
- #
- # Compute log10(z).
- #
-
- sub log10 {
- return Math::Complex::log($_[0]) * uplog10;
- }
-
- #
- # logn
- #
- # Compute logn(z,n) = log(z) / log(n)
- #
- sub logn {
- my ($z, $n) = @_;
- $z = cplx($z, 0) unless ref $z;
- my $logn = $logn{$n};
- $logn = $logn{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
- return CORE::log($z) / $logn;
- }
-
- #
- # (cos)
- #
- # Compute cos(z) = (exp(iz) + exp(-iz))/2.
- #
- sub cos {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- my $ey = CORE::exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(CORE::cos($x) * ($ey + $ey_1)/2,
- CORE::sin($x) * ($ey_1 - $ey)/2);
- }
-
- #
- # (sin)
- #
- # Compute sin(z) = (exp(iz) - exp(-iz))/2.
- #
- sub sin {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- my $ey = CORE::exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(CORE::sin($x) * ($ey + $ey_1)/2,
- CORE::cos($x) * ($ey - $ey_1)/2);
- }
-
- #
- # tan
- #
- # Compute tan(z) = sin(z) / cos(z).
- #
- sub tan {
- my ($z) = @_;
- my $cz = CORE::cos($z);
- _divbyzero "tan($z)", "cos($z)" if (CORE::abs($cz) < $eps);
- return CORE::sin($z) / $cz;
- }
-
- #
- # sec
- #
- # Computes the secant sec(z) = 1 / cos(z).
- #
- sub sec {
- my ($z) = @_;
- my $cz = CORE::cos($z);
- _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
- return 1 / $cz;
- }
-
- #
- # csc
- #
- # Computes the cosecant csc(z) = 1 / sin(z).
- #
- sub csc {
- my ($z) = @_;
- my $sz = CORE::sin($z);
- _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
- return 1 / $sz;
- }
-
- #
- # cosec
- #
- # Alias for csc().
- #
- sub cosec { Math::Complex::csc(@_) }
-
- #
- # cot
- #
- # Computes cot(z) = cos(z) / sin(z).
- #
- sub cot {
- my ($z) = @_;
- my $sz = CORE::sin($z);
- _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
- return CORE::cos($z) / $sz;
- }
-
- #
- # cotan
- #
- # Alias for cot().
- #
- sub cotan { Math::Complex::cot(@_) }
-
- #
- # acos
- #
- # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
- #
- sub acos {
- my $z = $_[0];
- return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
- my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
- my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
- my $alpha = ($t1 + $t2)/2;
- my $beta = ($t1 - $t2)/2;
- $alpha = 1 if $alpha < 1;
- if ($beta > 1) { $beta = 1 }
- elsif ($beta < -1) { $beta = -1 }
- my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
- my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
- $v = -$v if $y > 0 || ($y == 0 && $x < -1);
- return __PACKAGE__->make($u, $v);
- }
-
- #
- # asin
- #
- # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
- #
- sub asin {
- my $z = $_[0];
- return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
- my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
- my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
- my $alpha = ($t1 + $t2)/2;
- my $beta = ($t1 - $t2)/2;
- $alpha = 1 if $alpha < 1;
- if ($beta > 1) { $beta = 1 }
- elsif ($beta < -1) { $beta = -1 }
- my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
- my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
- $v = -$v if $y > 0 || ($y == 0 && $x < -1);
- return __PACKAGE__->make($u, $v);
- }
-
- #
- # atan
- #
- # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
- #
- sub atan {
- my ($z) = @_;
- return CORE::atan2($z, 1) unless ref $z;
- _divbyzero "atan(i)" if ( $z == i);
- _divbyzero "atan(-i)" if (-$z == i);
- my $log = CORE::log((i + $z) / (i - $z));
- $ip2 = 0.5 * i unless defined $ip2;
- return $ip2 * $log;
- }
-
- #
- # asec
- #
- # Computes the arc secant asec(z) = acos(1 / z).
- #
- sub asec {
- my ($z) = @_;
- _divbyzero "asec($z)", $z if ($z == 0);
- return acos(1 / $z);
- }
-
- #
- # acsc
- #
- # Computes the arc cosecant acsc(z) = asin(1 / z).
- #
- sub acsc {
- my ($z) = @_;
- _divbyzero "acsc($z)", $z if ($z == 0);
- return asin(1 / $z);
- }
-
- #
- # acosec
- #
- # Alias for acsc().
- #
- sub acosec { Math::Complex::acsc(@_) }
-
- #
- # acot
- #
- # Computes the arc cotangent acot(z) = atan(1 / z)
- #
- sub acot {
- my ($z) = @_;
- _divbyzero "acot(0)" if (CORE::abs($z) < $eps);
- return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z;
- _divbyzero "acot(i)" if (CORE::abs($z - i) < $eps);
- _logofzero "acot(-i)" if (CORE::abs($z + i) < $eps);
- return atan(1 / $z);
- }
-
- #
- # acotan
- #
- # Alias for acot().
- #
- sub acotan { Math::Complex::acot(@_) }
-
- #
- # cosh
- #
- # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
- #
- sub cosh {
- my ($z) = @_;
- my $ex;
- unless (ref $z) {
- $ex = CORE::exp($z);
- return ($ex + 1/$ex)/2;
- }
- my ($x, $y) = @{$z->cartesian};
- $ex = CORE::exp($x);
- my $ex_1 = 1 / $ex;
- return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
- CORE::sin($y) * ($ex - $ex_1)/2);
- }
-
- #
- # sinh
- #
- # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
- #
- sub sinh {
- my ($z) = @_;
- my $ex;
- unless (ref $z) {
- $ex = CORE::exp($z);
- return ($ex - 1/$ex)/2;
- }
- my ($x, $y) = @{$z->cartesian};
- $ex = CORE::exp($x);
- my $ex_1 = 1 / $ex;
- return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
- CORE::sin($y) * ($ex + $ex_1)/2);
- }
-
- #
- # tanh
- #
- # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
- #
- sub tanh {
- my ($z) = @_;
- my $cz = cosh($z);
- _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
- return sinh($z) / $cz;
- }
-
- #
- # sech
- #
- # Computes the hyperbolic secant sech(z) = 1 / cosh(z).
- #
- sub sech {
- my ($z) = @_;
- my $cz = cosh($z);
- _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
- return 1 / $cz;
- }
-
- #
- # csch
- #
- # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
- #
- sub csch {
- my ($z) = @_;
- my $sz = sinh($z);
- _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
- return 1 / $sz;
- }
-
- #
- # cosech
- #
- # Alias for csch().
- #
- sub cosech { Math::Complex::csch(@_) }
-
- #
- # coth
- #
- # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
- #
- sub coth {
- my ($z) = @_;
- my $sz = sinh($z);
- _divbyzero "coth($z)", "sinh($z)" if ($sz == 0);
- return cosh($z) / $sz;
- }
-
- #
- # cotanh
- #
- # Alias for coth().
- #
- sub cotanh { Math::Complex::coth(@_) }
-
- #
- # acosh
- #
- # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
- #
- sub acosh {
- my ($z) = @_;
- unless (ref $z) {
- return CORE::log($z + CORE::sqrt($z*$z-1)) if $z >= 1;
- $z = cplx($z, 0);
- }
- my ($re, $im) = @{$z->cartesian};
- if ($im == 0) {
- return cplx(CORE::log($re + CORE::sqrt($re*$re - 1)), 0) if $re >= 1;
- return cplx(0, CORE::atan2(CORE::sqrt(1-$re*$re), $re)) if CORE::abs($re) <= 1;
- }
- return CORE::log($z + CORE::sqrt($z*$z - 1));
- }
-
- #
- # asinh
- #
- # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1))
- #
- sub asinh {
- my ($z) = @_;
- return CORE::log($z + CORE::sqrt($z*$z + 1));
- }
-
- #
- # atanh
- #
- # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
- #
- sub atanh {
- my ($z) = @_;
- unless (ref $z) {
- return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
- $z = cplx($z, 0);
- }
- _divbyzero 'atanh(1)', "1 - $z" if ($z == 1);
- _logofzero 'atanh(-1)' if ($z == -1);
- return 0.5 * CORE::log((1 + $z) / (1 - $z));
- }
-
- #
- # asech
- #
- # Computes the hyperbolic arc secant asech(z) = acosh(1 / z).
- #
- sub asech {
- my ($z) = @_;
- _divbyzero 'asech(0)', $z if ($z == 0);
- return acosh(1 / $z);
- }
-
- #
- # acsch
- #
- # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z).
- #
- sub acsch {
- my ($z) = @_;
- _divbyzero 'acsch(0)', $z if ($z == 0);
- return asinh(1 / $z);
- }
-
- #
- # acosech
- #
- # Alias for acosh().
- #
- sub acosech { Math::Complex::acsch(@_) }
-
- #
- # acoth
- #
- # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
- #
- sub acoth {
- my ($z) = @_;
- _divbyzero 'acoth(0)' if (CORE::abs($z) < $eps);
- unless (ref $z) {
- return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
- $z = cplx($z, 0);
- }
- _divbyzero 'acoth(1)', "$z - 1" if (CORE::abs($z - 1) < $eps);
- _logofzero 'acoth(-1)', "1 / $z" if (CORE::abs($z + 1) < $eps);
- return CORE::log((1 + $z) / ($z - 1)) / 2;
- }
-
- #
- # acotanh
- #
- # Alias for acot().
- #
- sub acotanh { Math::Complex::acoth(@_) }
-
- #
- # (atan2)
- #
- # Compute atan(z1/z2).
- #
- sub atan2 {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1, $re2, $im2);
- if ($inverted) {
- ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
- ($re2, $im2) = @{$z1->cartesian};
- } else {
- ($re1, $im1) = @{$z1->cartesian};
- ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
- }
- if ($im2 == 0) {
- return cplx(CORE::atan2($re1, $re2), 0) if $im1 == 0;
- return cplx(($im1<=>0) * pip2, 0) if $re2 == 0;
- }
- my $w = atan($z1/$z2);
- my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0);
- $u += pi if $re2 < 0;
- $u -= pit2 if $u > pi;
- return cplx($u, $v);
- }
-
- #
- # display_format
- # ->display_format
- #
- # Set (get if no argument) the display format for all complex numbers that
- # don't happen to have overridden it via ->display_format
- #
- # When called as an object method, this actually sets the display format for
- # the current object.
- #
- # Valid object formats are 'c' and 'p' for cartesian and polar. The first
- # letter is used actually, so the type can be fully spelled out for clarity.
- #
- sub display_format {
- my $self = shift;
- my %display_format = %DISPLAY_FORMAT;
-
- if (ref $self) { # Called as an object method
- if (exists $self->{display_format}) {
- my %obj = %{$self->{display_format}};
- @display_format{keys %obj} = values %obj;
- }
- if (@_ == 1) {
- $display_format{style} = shift;
- } else {
- my %new = @_;
- @display_format{keys %new} = values %new;
- }
- } else { # Called as a class method
- if (@_ = 1) {
- $display_format{style} = $self;
- } else {
- my %new = @_;
- @display_format{keys %new} = values %new;
- }
- undef $self;
- }
-
- if (defined $self) {
- $self->{display_format} = { %display_format };
- return
- wantarray ?
- %{$self->{display_format}} :
- $self->{display_format}->{style};
- }
-
- %DISPLAY_FORMAT = %display_format;
- return
- wantarray ?
- %DISPLAY_FORMAT :
- $DISPLAY_FORMAT{style};
- }
-
- #
- # (stringify)
- #
- # Show nicely formatted complex number under its cartesian or polar form,
- # depending on the current display format:
- #
- # . If a specific display format has been recorded for this object, use it.
- # . Otherwise, use the generic current default for all complex numbers,
- # which is a package global variable.
- #
- sub stringify {
- my ($z) = shift;
-
- my $style = $z->display_format;
-
- $style = $DISPLAY_FORMAT{style} unless defined $style;
-
- return $z->stringify_polar if $style =~ /^p/i;
- return $z->stringify_cartesian;
- }
-
- #
- # ->stringify_cartesian
- #
- # Stringify as a cartesian representation 'a+bi'.
- #
- sub stringify_cartesian {
- my $z = shift;
- my ($x, $y) = @{$z->cartesian};
- my ($re, $im);
-
- $x = int($x + ($x < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($x)) != int(CORE::abs($x) + $eps);
- $y = int($y + ($y < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($y)) != int(CORE::abs($y) + $eps);
-
- $re = "$x" if CORE::abs($x) >= $eps;
-
- my %format = $z->display_format;
- my $format = $format{format};
-
- if ($y == 1) { $im = 'i' }
- elsif ($y == -1) { $im = '-i' }
- elsif (CORE::abs($y) >= $eps) {
- $im = (defined $format ? sprintf($format, $y) : $y) . "i";
- }
-
- my $str = '';
- $str = defined $format ? sprintf($format, $re) : $re
- if defined $re;
- if (defined $im) {
- if ($y < 0) {
- $str .= $im;
- } elsif ($y > 0) {
- $str .= "+" if defined $re;
- $str .= $im;
- }
- }
-
- return $str;
- }
-
-
- # Helper for stringify_polar, a Greatest Common Divisor with a memory.
-
- sub _gcd {
- my ($a, $b) = @_;
-
- use integer;
-
- # Loops forever if given negative inputs.
-
- if ($b and $a > $b) { return gcd($a % $b, $b) }
- elsif ($a and $b > $a) { return gcd($b % $a, $a) }
- else { return $a ? $a : $b }
- }
-
- my %gcd;
-
- sub gcd {
- my ($a, $b) = @_;
-
- my $id = "$a $b";
-
- unless (exists $gcd{$id}) {
- $gcd{$id} = _gcd($a, $b);
- $gcd{"$b $a"} = $gcd{$id};
- }
-
- return $gcd{$id};
- }
-
- #
- # ->stringify_polar
- #
- # Stringify as a polar representation '[r,t]'.
- #
- sub stringify_polar {
- my $z = shift;
- my ($r, $t) = @{$z->polar};
- my $theta;
-
- return '[0,0]' if $r <= $eps;
-
- my %format = $z->display_format;
-
- my $nt = $t / pit2;
- $nt = ($nt - int($nt)) * pit2;
- $nt += pit2 if $nt < 0; # Range [0, 2pi]
-
- if (CORE::abs($nt) <= $eps) { $theta = 0 }
- elsif (CORE::abs(pi-$nt) <= $eps) { $theta = 'pi' }
-
- if (defined $theta) {
- $r = int($r + ($r < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
- $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
- if ($theta ne 'pi' and
- int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
- return "\[$r,$theta\]";
- }
-
- #
- # Okay, number is not a real. Try to identify pi/n and friends...
- #
-
- $nt -= pit2 if $nt > pi;
-
- if ($format{polar_pretty_print} && CORE::abs($nt) >= deg1) {
- my ($n, $k, $kpi);
-
- for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) {
- $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5);
- if (CORE::abs($kpi/$n - $nt) <= $eps) {
- $n = CORE::abs($n);
- my $gcd = gcd($k, $n);
- if ($gcd > 1) {
- $k /= $gcd;
- $n /= $gcd;
- }
- next if $n > 360;
- $theta = ($nt < 0 ? '-':'').
- ($k == 1 ? 'pi':"${k}pi");
- $theta .= '/'.$n if $n > 1;
- last;
- }
- }
- }
-
- $theta = $nt unless defined $theta;
-
- $r = int($r + ($r < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
- $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
- if ($theta !~ m(^-?\d*pi/\d+$) and
- int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
-
- my $format = $format{format};
- if (defined $format) {
- $r = sprintf($format, $r);
- $theta = sprintf($format, $theta);
- }
-
- return "\[$r,$theta\]";
- }
-
- 1;
- __END__
-
- =pod
- =head1 NAME
-
- Math::Complex - complex numbers and associated mathematical functions
-
- =head1 SYNOPSIS
-
- use Math::Complex;
-
- $z = Math::Complex->make(5, 6);
- $t = 4 - 3*i + $z;
- $j = cplxe(1, 2*pi/3);
-
- =head1 DESCRIPTION
-
- This package lets you create and manipulate complex numbers. By default,
- I<Perl> limits itself to real numbers, but an extra C<use> statement brings
- full complex support, along with a full set of mathematical functions
- typically associated with and/or extended to complex numbers.
-
- If you wonder what complex numbers are, they were invented to be able to solve
- the following equation:
-
- x*x = -1
-
- and by definition, the solution is noted I<i> (engineers use I<j> instead since
- I<i> usually denotes an intensity, but the name does not matter). The number
- I<i> is a pure I<imaginary> number.
-
- The arithmetics with pure imaginary numbers works just like you would expect
- it with real numbers... you just have to remember that
-
- i*i = -1
-
- so you have:
-
- 5i + 7i = i * (5 + 7) = 12i
- 4i - 3i = i * (4 - 3) = i
- 4i * 2i = -8
- 6i / 2i = 3
- 1 / i = -i
-
- Complex numbers are numbers that have both a real part and an imaginary
- part, and are usually noted:
-
- a + bi
-
- where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
- arithmetic with complex numbers is straightforward. You have to
- keep track of the real and the imaginary parts, but otherwise the
- rules used for real numbers just apply:
-
- (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
- (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
-
- A graphical representation of complex numbers is possible in a plane
- (also called the I<complex plane>, but it's really a 2D plane).
- The number
-
- z = a + bi
-
- is the point whose coordinates are (a, b). Actually, it would
- be the vector originating from (0, 0) to (a, b). It follows that the addition
- of two complex numbers is a vectorial addition.
-
- Since there is a bijection between a point in the 2D plane and a complex
- number (i.e. the mapping is unique and reciprocal), a complex number
- can also be uniquely identified with polar coordinates:
-
- [rho, theta]
-
- where C<rho> is the distance to the origin, and C<theta> the angle between
- the vector and the I<x> axis. There is a notation for this using the
- exponential form, which is:
-
- rho * exp(i * theta)
-
- where I<i> is the famous imaginary number introduced above. Conversion
- between this form and the cartesian form C<a + bi> is immediate:
-
- a = rho * cos(theta)
- b = rho * sin(theta)
-
- which is also expressed by this formula:
-
- z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
-
- In other words, it's the projection of the vector onto the I<x> and I<y>
- axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
- the I<argument> of the complex number. The I<norm> of C<z> will be
- noted C<abs(z)>.
-
- The polar notation (also known as the trigonometric
- representation) is much more handy for performing multiplications and
- divisions of complex numbers, whilst the cartesian notation is better
- suited for additions and subtractions. Real numbers are on the I<x>
- axis, and therefore I<theta> is zero or I<pi>.
-
- All the common operations that can be performed on a real number have
- been defined to work on complex numbers as well, and are merely
- I<extensions> of the operations defined on real numbers. This means
- they keep their natural meaning when there is no imaginary part, provided
- the number is within their definition set.
-
- For instance, the C<sqrt> routine which computes the square root of
- its argument is only defined for non-negative real numbers and yields a
- non-negative real number (it is an application from B<R+> to B<R+>).
- If we allow it to return a complex number, then it can be extended to
- negative real numbers to become an application from B<R> to B<C> (the
- set of complex numbers):
-
- sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
-
- It can also be extended to be an application from B<C> to B<C>,
- whilst its restriction to B<R> behaves as defined above by using
- the following definition:
-
- sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
-
- Indeed, a negative real number can be noted C<[x,pi]> (the modulus
- I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
- number) and the above definition states that
-
- sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
-
- which is exactly what we had defined for negative real numbers above.
- The C<sqrt> returns only one of the solutions: if you want the both,
- use the C<root> function.
-
- All the common mathematical functions defined on real numbers that
- are extended to complex numbers share that same property of working
- I<as usual> when the imaginary part is zero (otherwise, it would not
- be called an extension, would it?).
-
- A I<new> operation possible on a complex number that is
- the identity for real numbers is called the I<conjugate>, and is noted
- with an horizontal bar above the number, or C<~z> here.
-
- z = a + bi
- ~z = a - bi
-
- Simple... Now look:
-
- z * ~z = (a + bi) * (a - bi) = a*a + b*b
-
- We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
- distance to the origin, also known as:
-
- rho = abs(z) = sqrt(a*a + b*b)
-
- so
-
- z * ~z = abs(z) ** 2
-
- If z is a pure real number (i.e. C<b == 0>), then the above yields:
-
- a * a = abs(a) ** 2
-
- which is true (C<abs> has the regular meaning for real number, i.e. stands
- for the absolute value). This example explains why the norm of C<z> is
- noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
- is the regular C<abs> we know when the complex number actually has no
- imaginary part... This justifies I<a posteriori> our use of the C<abs>
- notation for the norm.
-
- =head1 OPERATIONS
-
- Given the following notations:
-
- z1 = a + bi = r1 * exp(i * t1)
- z2 = c + di = r2 * exp(i * t2)
- z = <any complex or real number>
-
- the following (overloaded) operations are supported on complex numbers:
-
- z1 + z2 = (a + c) + i(b + d)
- z1 - z2 = (a - c) + i(b - d)
- z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
- z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
- z1 ** z2 = exp(z2 * log z1)
- ~z = a - bi
- abs(z) = r1 = sqrt(a*a + b*b)
- sqrt(z) = sqrt(r1) * exp(i * t/2)
- exp(z) = exp(a) * exp(i * b)
- log(z) = log(r1) + i*t
- sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
- cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
- atan2(z1, z2) = atan(z1/z2)
-
- The following extra operations are supported on both real and complex
- numbers:
-
- Re(z) = a
- Im(z) = b
- arg(z) = t
- abs(z) = r
-
- cbrt(z) = z ** (1/3)
- log10(z) = log(z) / log(10)
- logn(z, n) = log(z) / log(n)
-
- tan(z) = sin(z) / cos(z)
-
- csc(z) = 1 / sin(z)
- sec(z) = 1 / cos(z)
- cot(z) = 1 / tan(z)
-
- asin(z) = -i * log(i*z + sqrt(1-z*z))
- acos(z) = -i * log(z + i*sqrt(1-z*z))
- atan(z) = i/2 * log((i+z) / (i-z))
-
- acsc(z) = asin(1 / z)
- asec(z) = acos(1 / z)
- acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
-
- sinh(z) = 1/2 (exp(z) - exp(-z))
- cosh(z) = 1/2 (exp(z) + exp(-z))
- tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
-
- csch(z) = 1 / sinh(z)
- sech(z) = 1 / cosh(z)
- coth(z) = 1 / tanh(z)
-
- asinh(z) = log(z + sqrt(z*z+1))
- acosh(z) = log(z + sqrt(z*z-1))
- atanh(z) = 1/2 * log((1+z) / (1-z))
-
- acsch(z) = asinh(1 / z)
- asech(z) = acosh(1 / z)
- acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
-
- I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
- I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
- I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
- I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
- C<rho>, and C<theta> can be used also also mutators. The C<cbrt>
- returns only one of the solutions: if you want all three, use the
- C<root> function.
-
- The I<root> function is available to compute all the I<n>
- roots of some complex, where I<n> is a strictly positive integer.
- There are exactly I<n> such roots, returned as a list. Getting the
- number mathematicians call C<j> such that:
-
- 1 + j + j*j = 0;
-
- is a simple matter of writing:
-
- $j = ((root(1, 3))[1];
-
- The I<k>th root for C<z = [r,t]> is given by:
-
- (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
-
- The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In
- order to ensure its restriction to real numbers is conform to what you
- would expect, the comparison is run on the real part of the complex
- number first, and imaginary parts are compared only when the real
- parts match.
-
- =head1 CREATION
-
- To create a complex number, use either:
-
- $z = Math::Complex->make(3, 4);
- $z = cplx(3, 4);
-
- if you know the cartesian form of the number, or
-
- $z = 3 + 4*i;
-
- if you like. To create a number using the polar form, use either:
-
- $z = Math::Complex->emake(5, pi/3);
- $x = cplxe(5, pi/3);
-
- instead. The first argument is the modulus, the second is the angle
- (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
- notation for complex numbers in the polar form).
-
- It is possible to write:
-
- $x = cplxe(-3, pi/4);
-
- but that will be silently converted into C<[3,-3pi/4]>, since the
- modulus must be non-negative (it represents the distance to the origin
- in the complex plane).
-
- It is also possible to have a complex number as either argument of
- either the C<make> or C<emake>: the appropriate component of
- the argument will be used.
-
- $z1 = cplx(-2, 1);
- $z2 = cplx($z1, 4);
-
- =head1 STRINGIFICATION
-
- When printed, a complex number is usually shown under its cartesian
- style I<a+bi>, but there are legitimate cases where the polar style
- I<[r,t]> is more appropriate.
-
- By calling the class method C<Math::Complex::display_format> and
- supplying either C<"polar"> or C<"cartesian"> as an argument, you
- override the default display style, which is C<"cartesian">. Not
- supplying any argument returns the current settings.
-
- This default can be overridden on a per-number basis by calling the
- C<display_format> method instead. As before, not supplying any argument
- returns the current display style for this number. Otherwise whatever you
- specify will be the new display style for I<this> particular number.
-
- For instance:
-
- use Math::Complex;
-
- Math::Complex::display_format('polar');
- $j = (root(1, 3))[1];
- print "j = $j\n"; # Prints "j = [1,2pi/3]"
- $j->display_format('cartesian');
- print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
-
- The polar style attempts to emphasize arguments like I<k*pi/n>
- (where I<n> is a positive integer and I<k> an integer within [-9,+9]),
- this is called I<polar pretty-printing>.
-
- =head2 CHANGED IN PERL 5.6
-
- The C<display_format> class method and the corresponding
- C<display_format> object method can now be called using
- a parameter hash instead of just a one parameter.
-
- The old display format style, which can have values C<"cartesian"> or
- C<"polar">, can be changed using the C<"style"> parameter. (The one
- parameter calling convention also still works.)
-
- There are two new display parameters.
-
- The first one is C<"format">, which is a sprintf()-style format
- string to be used for both parts of the complex number(s). The
- default is C<undef>, which corresponds usually (this is somewhat
- system-dependent) to C<"%.15g">. You can revert to the default by
- setting the format string to C<undef>.
-
- # the $j from the above example
-
- $j->display_format('format' => '%.5f');
- print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
- $j->display_format('format' => '%.6f');
- print "j = $j\n"; # Prints "j = -0.5+0.86603i"
-
- Notice that this affects also the return values of the
- C<display_format> methods: in list context the whole parameter hash
- will be returned, as opposed to only the style parameter value. If
- you want to know the whole truth for a complex number, you must call
- both the class method and the object method:
-
- The second new display parameter is C<"polar_pretty_print">, which can
- be set to true or false, the default being true. See the previous
- section for what this means.
-
- =head1 USAGE
-
- Thanks to overloading, the handling of arithmetics with complex numbers
- is simple and almost transparent.
-
- Here are some examples:
-
- use Math::Complex;
-
- $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
- print "j = $j, j**3 = ", $j ** 3, "\n";
- print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
-
- $z = -16 + 0*i; # Force it to be a complex
- print "sqrt($z) = ", sqrt($z), "\n";
-
- $k = exp(i * 2*pi/3);
- print "$j - $k = ", $j - $k, "\n";
-
- $z->Re(3); # Re, Im, arg, abs,
- $j->arg(2); # (the last two aka rho, theta)
- # can be used also as mutators.
-
- =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
-
- The division (/) and the following functions
-
- log ln log10 logn
- tan sec csc cot
- atan asec acsc acot
- tanh sech csch coth
- atanh asech acsch acoth
-
- cannot be computed for all arguments because that would mean dividing
- by zero or taking logarithm of zero. These situations cause fatal
- runtime errors looking like this
-
- cot(0): Division by zero.
- (Because in the definition of cot(0), the divisor sin(0) is 0)
- Died at ...
-
- or
-
- atanh(-1): Logarithm of zero.
- Died at...
-
- For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
- C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the the
- logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
- be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
- C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
- C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
- cannot be C<-i> (the negative imaginary unit). For the C<tan>,
- C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
- is any integer.
-
- Note that because we are operating on approximations of real numbers,
- these errors can happen when merely `too close' to the singularities
- listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of
- division by zero.
-
- =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
-
- The C<make> and C<emake> accept both real and complex arguments.
- When they cannot recognize the arguments they will die with error
- messages like the following
-
- Math::Complex::make: Cannot take real part of ...
- Math::Complex::make: Cannot take real part of ...
- Math::Complex::emake: Cannot take rho of ...
- Math::Complex::emake: Cannot take theta of ...
-
- =head1 BUGS
-
- Saying C<use Math::Complex;> exports many mathematical routines in the
- caller environment and even overrides some (C<sqrt>, C<log>).
- This is construed as a feature by the Authors, actually... ;-)
-
- All routines expect to be given real or complex numbers. Don't attempt to
- use BigFloat, since Perl has currently no rule to disambiguate a '+'
- operation (for instance) between two overloaded entities.
-
- In Cray UNICOS there is some strange numerical instability that results
- in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
- The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
- Whatever it is, it does not manifest itself anywhere else where Perl runs.
-
- =head1 AUTHORS
-
- Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and
- Jarkko Hietaniemi <F<jhi@iki.fi>>.
-
- Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>.
-
- =cut
-
- 1;
-
- # eof
-