home *** CD-ROM | disk | FTP | other *** search
- ROT(3F) Last changed: 11-2-98
-
-
- NNAAMMEE
- SSRROOTT, DDRROOTT - Applies a real plane rotation or complex coordinate
- rotation
-
- SSYYNNOOPPSSIISS
- Real
-
- CCAALLLL SSRROOTT ((_n,, _x,, _i_n_c_x,, _y,, _i_n_c_y,, _c,, _s))
-
- Double precision
-
- CCAALLLL DDRROOTT ((_n,, _x,, _i_n_c_x,, _y,, _i_n_c_y,, _c,, _s))
-
- IIMMPPLLEEMMEENNTTAATTIIOONN
- IRIX systems
-
- DDEESSCCRRIIPPTTIIOONN
- SSRROOTT/DDRROOTT applies a plane rotation matrix to a real sequence of
- ordered pairs:
-
- (_x , _y ), for all _i = 1, 2, ..., _n.
- _i _i
- These routines have the following arguments:
-
- _n Integer. (input)
- Number of ordered pairs (planar points in SSRROOTT) to be
- rotated. If _n <= 0, these routines return without
- computation.
-
- _x Array of dimension (_n-1) * |_i_n_c_x| + 1. (input and output)
- SSRROOTT: Real array.
- DDRROOTT: Double precision array.
- On input, array _x contains the _x-coordinate of each planar
- point to be rotated. On output, array _x contains the
- _x-coordinate of each rotated planar point.
-
- _i_n_c_x Integer. (input)
- Increment between elements of _x. If _i_n_c_x = 0, the results
- will be unpredictable.
-
- _y Array of dimension (_n-1) * |_i_n_c_y| + 1. (input and output)
- SSRROOTT: Real array.
- DDRROOTT: Double precision array.
- On input, array _y contains the _y-coordinate of each planar
- point to be rotated. On output, array _y contains the
- _y-coordinate of each rotated planar point.
-
- _i_n_c_y Integer. (input)
- Increment between elements of _y. If _i_n_c_y = 0, the results
- will be unpredictable.
-
- _c Cosine of the angle of rotation, usually calculated using
- SSRROOTTGG(3F) or CCRROOTTGG(3F). (input)
- SSRROOTT: Real.
- DDRROOTT: Double precision.
-
- _s Sine of the angle of rotation, usually calculated using
- SSRROOTTGG. (input)
- SSRROOTT: Real.
- DDRROOTT: Double precision.
-
- NNOOTTEESS
- These routines are Level 1 Basic Linear Algebra Subprograms (Level 1
- BLAS).
-
- SSRROOTT/DDRROOTT applies the following plane rotation to each pair of
- elements (_x , _y ):
- _i _i
- _ _ _ _ _ _
- | x | <- | c s | * | x |
- | i | | | | i |
- | y | |-s c | | y |
- | i | | | | i |
- - - - - - -
-
- for i = 1,...,n
- _2 _2
- If coefficients _c and _s satisfy _c + _s = 1.0, the rotation matrix is
- orthogonal, and the transformation is called a _G_i_v_e_n_s _p_l_a_n_e _r_o_t_a_t_i_o_n.
- If _c = 1 and _s = 0, SSRROOTT/DDRROOTT returns without modifying any input
- parameters.
-
- To calculate the Givens coefficients _c and _s from a two-element vector
- to determine the angle of rotation, use SSRROOTTGG.
-
- When working backward (_i_n_c_x < 0 or _i_n_c_y < 0), each routine starts at
- the end of the vector and moves backward, as follows:
-
- _x(1-_i_n_c_x * (_n-1)), _x(1-_i_n_c_x * (_n-2)), ..., _x(1)
-
- _y(1-_i_n_c_y * (_n-1)), _y(1-_i_n_c_y * (_n-2)), ..., _y(1)
-
- SSEEEE AALLSSOO
- SSRROOTTGG(3F), SSRROOTTMM(3F), SSRROOTTMMGG(3F)
-
- This man page is available only online.
-