home *** CD-ROM | disk | FTP | other *** search
-
-
-
- SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF)))) SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- SGTRFS - improve the computed solution to a system of linear equations
- when the coefficient matrix is tridiagonal, and provides error bounds and
- backward error estimates for the solution
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B,
- LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
-
- CHARACTER TRANS
-
- INTEGER INFO, LDB, LDX, N, NRHS
-
- INTEGER IPIV( * ), IWORK( * )
-
- REAL B( LDB, * ), BERR( * ), D( * ), DF( * ), DL( * ), DLF(
- * ), DU( * ), DU2( * ), DUF( * ), FERR( * ), WORK( *
- ), X( LDX, * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- SGTRFS improves the computed solution to a system of linear equations
- when the coefficient matrix is tridiagonal, and provides error bounds and
- backward error estimates for the solution.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- TRANS (input) CHARACTER*1
- Specifies the form of the system of equations:
- = 'N': A * X = B (No transpose)
- = 'T': A**T * X = B (Transpose)
- = 'C': A**H * X = B (Conjugate transpose = Transpose)
-
- N (input) INTEGER
- The order of the matrix A. N >= 0.
-
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns of
- the matrix B. NRHS >= 0.
-
- DL (input) REAL array, dimension (N-1)
- The (n-1) subdiagonal elements of A.
-
- D (input) REAL array, dimension (N)
- The diagonal elements of A.
-
- DU (input) REAL array, dimension (N-1)
- The (n-1) superdiagonal elements of A.
-
- DLF (input) REAL array, dimension (N-1)
- The (n-1) multipliers that define the matrix L from the LU
- factorization of A as computed by SGTTRF.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF)))) SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF))))
-
-
-
- DF (input) REAL array, dimension (N)
- The n diagonal elements of the upper triangular matrix U from the
- LU factorization of A.
-
- DUF (input) REAL array, dimension (N-1)
- The (n-1) elements of the first superdiagonal of U.
-
- DU2 (input) REAL array, dimension (N-2)
- The (n-2) elements of the second superdiagonal of U.
-
- IPIV (input) INTEGER array, dimension (N)
- The pivot indices; for 1 <= i <= n, row i of the matrix was
- interchanged with row IPIV(i). IPIV(i) will always be either i
- or i+1; IPIV(i) = i indicates a row interchange was not required.
-
- B (input) REAL array, dimension (LDB,NRHS)
- The right hand side matrix B.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- X (input/output) REAL array, dimension (LDX,NRHS)
- On entry, the solution matrix X, as computed by SGTTRS. On exit,
- the improved solution matrix X.
-
- LDX (input) INTEGER
- The leading dimension of the array X. LDX >= max(1,N).
-
- FERR (output) REAL array, dimension (NRHS)
- The estimated forward error bound for each solution vector X(j)
- (the j-th column of the solution matrix X). If XTRUE is the true
- solution corresponding to X(j), FERR(j) is an estimated upper
- bound for the magnitude of the largest element in (X(j) - XTRUE)
- divided by the magnitude of the largest element in X(j). The
- estimate is as reliable as the estimate for RCOND, and is almost
- always a slight overestimate of the true error.
-
- BERR (output) REAL array, dimension (NRHS)
- The componentwise relative backward error of each solution vector
- X(j) (i.e., the smallest relative change in any element of A or B
- that makes X(j) an exact solution).
-
- WORK (workspace) REAL array, dimension (3*N)
-
- IWORK (workspace) INTEGER array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF)))) SSSSGGGGTTTTRRRRFFFFSSSS((((3333FFFF))))
-
-
-
- PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRRSSSS
- ITMAX is the maximum number of steps of iterative refinement.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-