home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDSSSSTTTTEEEEVVVVDDDD((((3333FFFF)))) DDDDSSSSTTTTEEEEVVVVDDDD((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DSTEVD - compute all eigenvalues and, optionally, eigenvectors of a real
- symmetric tridiagonal matrix
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
- INFO )
-
- CHARACTER JOBZ
-
- INTEGER INFO, LDZ, LIWORK, LWORK, N
-
- INTEGER IWORK( * )
-
- DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DSTEVD computes all eigenvalues and, optionally, eigenvectors of a real
- symmetric tridiagonal matrix. If eigenvectors are desired, it uses a
- divide and conquer algorithm.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits which
- subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could
- conceivably fail on hexadecimal or decimal machines without guard digits,
- but we know of none.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- N (input) INTEGER
- The order of the matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the n diagonal elements of the tridiagonal matrix A.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the (n-1) subdiagonal elements of the tridiagonal
- matrix A, stored in elements 1 to N-1 of E; E(N) need not be set,
- but is used by the routine. On exit, the contents of E are
- destroyed.
-
- Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
- If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- eigenvectors of the matrix A, with the i-th column of Z holding
- the eigenvector associated with D(i). If JOBZ = 'N', then Z is
- not referenced.
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDSSSSTTTTEEEEVVVVDDDD((((3333FFFF)))) DDDDSSSSTTTTEEEEVVVVDDDD((((3333FFFF))))
-
-
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
- 'V', LDZ >= max(1,N).
-
- WORK (workspace/output) DOUBLE PRECISION array,
- dimension (LWORK) On exit, if LWORK > 0, WORK(1) returns the
- optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If JOBZ = 'N' or N <= 1 then
- LWORK must be at least 1. If JOBZ = 'V' and N > 1 then LWORK
- must be at least ( 1 + 3*N + 2*N*lg N + 2*N**2 ), where lg( N ) =
- smallest integer k such that 2**k >= N.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK. If JOBZ = 'N' or N <= 1 then
- LIWORK must be at least 1. If JOBZ = 'V' and N > 1 then LIWORK
- must be at least 2+5*N.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the algorithm failed to converge; i off-
- diagonal elements of E did not converge to zero.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-