home *** CD-ROM | disk | FTP | other *** search
-
-
-
- CCCCSSSSTTTTEEEEDDDDCCCC((((3333FFFF)))) CCCCSSSSTTTTEEEEDDDDCCCC((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- CSTEDC - compute all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK,
- IWORK, LIWORK, INFO )
-
- CHARACTER COMPZ
-
- INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
-
- INTEGER IWORK( * )
-
- REAL D( * ), E( * ), RWORK( * )
-
- COMPLEX WORK( * ), Z( LDZ, * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- CSTEDC computes all eigenvalues and, optionally, eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method. The
- eigenvectors of a full or band complex Hermitian matrix can also be found
- if CHETRD or CHPTRD or CHBTRD has been used to reduce this matrix to
- tridiagonal form.
-
- This code makes very mild assumptions about floating point arithmetic. It
- will work on machines with a guard digit in add/subtract, or on those
- binary machines without guard digits which subtract like the Cray X-MP,
- Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on
- hexadecimal or decimal machines without guard digits, but we know of
- none. See SLAED3 for details.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
- = 'I': Compute eigenvectors of tridiagonal matrix also.
- = 'V': Compute eigenvectors of original Hermitian matrix also.
- On entry, Z contains the unitary matrix used to reduce the
- original matrix to tridiagonal form.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) REAL array, dimension (N)
- On entry, the diagonal elements of the tridiagonal matrix. On
- exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) REAL array, dimension (N-1)
- On entry, the subdiagonal elements of the tridiagonal matrix. On
- exit, E has been destroyed.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- CCCCSSSSTTTTEEEEDDDDCCCC((((3333FFFF)))) CCCCSSSSTTTTEEEEDDDDCCCC((((3333FFFF))))
-
-
-
- Z (input/output) COMPLEX array, dimension (LDZ,N)
- On entry, if COMPZ = 'V', then Z contains the unitary matrix used
- in the reduction to tridiagonal form. On exit, if INFO = 0, then
- if COMPZ = 'V', Z contains the orthonormal eigenvectors of the
- original Hermitian matrix, and if COMPZ = 'I', Z contains the
- orthonormal eigenvectors of the symmetric tridiagonal matrix. If
- COMPZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1. If eigenvectors
- are desired, then LDZ >= max(1,N).
-
- WORK (workspace/output) COMPLEX array, dimension (LWORK)
- On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If COMPZ = 'N' or 'I', or N <=
- 1, LWORK must be at least 1. If COMPZ = 'V' and N > 1, LWORK
- must be at least N*N.
-
- RWORK (workspace/output) REAL array,
- dimension (LRWORK) On exit, if LRWORK > 0, RWORK(1) returns the
- optimal LRWORK.
-
- LRWORK (input) INTEGER
- The dimension of the array RWORK. If COMPZ = 'N' or N <= 1,
- LRWORK must be at least 1. If COMPZ = 'V' and N > 1, LRWORK must
- be at least 1 + 3*N + 2*N*lg N + 3*N**2 , where lg( N ) =
- smallest integer k such that 2**k >= N. If COMPZ = 'I' and N >
- 1, LRWORK must be at least 1 + 3*N + 2*N*lg N + 3*N**2 .
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK. If COMPZ = 'N' or N <= 1,
- LIWORK must be at least 1. If COMPZ = 'V' or N > 1, LIWORK must
- be at least 6 + 6*N + 5*N*lg N. If COMPZ = 'I' or N > 1, LIWORK
- must be at least 2 + 5*N .
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while working
- on the submatrix lying in rows and columns INFO/(N+1) through
- mod(INFO,N+1).
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-