home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ____FFFFIIIIGGGGIIII((((3333FFFF)))) ____FFFFIIIIGGGGIIII((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- FIGI, SFIGI - EISPACK routine. Given a NONSYMMETRIC TRIDIAGONAL
- matrix such that the products of corresponding pairs of off-diagonal
- elements are all non-negative, this subroutine reduces it to a symmetric
- tridiagonal matrix with the same eigenvalues. If, further, a zero
- product only occurs when both factors are zero, the reduced matrix is
- similar to the original matrix.
-
-
- SSSSYYYYNNNNOOOOPPPPSSSSYYYYSSSS
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee ffffiiiiggggiiii((((nnnnmmmm,,,, nnnn,,,, tttt,,,, dddd,,,, eeee,,,, eeee2222,,,, iiiieeeerrrrrrrr))))
- iiiinnnntttteeeeggggeeeerrrr nnnn,,,, nnnnmmmm,,,, iiiieeeerrrrrrrr
- ddddoooouuuubbbblllleeee pppprrrreeeecccciiiissssiiiioooonnnn tttt((((nnnnmmmm,,,,3333)))),,,, dddd((((nnnn)))),,,, eeee((((nnnn)))),,,, eeee2222((((nnnn))))
-
-
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee ssssffffiiiiggggiiii((((nnnnmmmm,,,, nnnn,,,, tttt,,,, dddd,,,, eeee,,,, eeee2222,,,, iiiieeeerrrrrrrr))))
- iiiinnnntttteeeeggggeeeerrrr nnnn,,,, nnnnmmmm,,,, iiiieeeerrrrrrrr
- rrrreeeeaaaallll tttt((((nnnnmmmm,,,,3333)))),,,, dddd((((nnnn)))),,,, eeee((((nnnn)))),,,, eeee2222((((nnnn))))
-
-
-
- DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
- On INPUT
-
- NNNNMMMM must be set to the row dimension of two-dimensional array parameters
- as declared in the calling program dimension statement.
-
- NNNN is the order of the matrix.
-
- TTTT contains the input matrix. Its subdiagonal is stored in the last N-1
- positions of the first column, its diagonal in the N positions of the
- second column, and its superdiagonal in the first N-1 positions of the
- third column. T(1,1) and T(N,3) are arbitrary. On OUTPUT
-
- TTTT is unaltered.
-
- DDDD contains the diagonal elements of the symmetric matrix.
-
- EEEE contains the subdiagonal elements of the symmetric matrix in its last
- N-1 positions. E(1) is not set.
-
- EEEE2222 contains the squares of the corresponding elements of E. E2 may
- coincide with E if the squares are not needed.
-
- IIIIEEEERRRRRRRR is set to Zero for normal return, N+I if T(I,1)*T(I-
- 1,3) is negative, -(3*N+I) if T(I,1)*T(I-1,3) is zero with one factor
- non-zero. In this case, the eigenvectors of
- the symmetric matrix are not simply related
- to those of T and should not be sought. Questions and comments
- should be directed to B. S. Garbow, APPLIED MATHEMATICS DIVISION, ARGONNE
- NATIONAL LABORATORY
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-