home *** CD-ROM | disk | FTP | other *** search
- // This may look like C code, but it is really -*- C++ -*-
- /*
- Copyright (C) 1988 Free Software Foundation
- written by Doug Lea (dl@rocky.oswego.edu)
-
- This file is part of the GNU C++ Library. This library is free
- software; you can redistribute it and/or modify it under the terms of
- the GNU Library General Public License as published by the Free
- Software Foundation; either version 2 of the License, or (at your
- option) any later version. This library is distributed in the hope
- that it will be useful, but WITHOUT ANY WARRANTY; without even the
- implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
- PURPOSE. See the GNU Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with this library; if not, write to the Free Software
- Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #ifdef __GNUG__
- #pragma implementation
- #endif
- #include <stream.h>
- #include <builtin.h>
- #include "<T>.Vec.h"
-
- // error handling
-
-
- void default_<T>Vec_error_handler(const char* msg)
- {
- cerr << "Fatal <T>Vec error. " << msg << "\n";
- exit(1);
- }
-
- one_arg_error_handler_t <T>Vec_error_handler = default_<T>Vec_error_handler;
-
- one_arg_error_handler_t set_<T>Vec_error_handler(one_arg_error_handler_t f)
- {
- one_arg_error_handler_t old = <T>Vec_error_handler;
- <T>Vec_error_handler = f;
- return old;
- }
-
- void <T>Vec::error(const char* msg)
- {
- (*<T>Vec_error_handler)(msg);
- }
-
- void <T>Vec::range_error()
- {
- (*<T>Vec_error_handler)("Index out of range.");
- }
-
- <T>Vec::<T>Vec(<T>Vec& v)
- {
- s = new <T> [len = v.len];
- <T>* top = &(s[len]);
- <T>* t = s;
- <T>* u = v.s;
- while (t < top) *t++ = *u++;
- }
-
- <T>Vec::<T>Vec(int l, <T&> fill_value)
- {
- s = new <T> [len = l];
- <T>* top = &(s[len]);
- <T>* t = s;
- while (t < top) *t++ = fill_value;
- }
-
-
- <T>Vec& <T>Vec::operator = (<T>Vec& v)
- {
- if (this != &v)
- {
- delete [] s;
- s = new <T> [len = v.len];
- <T>* top = &(s[len]);
- <T>* t = s;
- <T>* u = v.s;
- while (t < top) *t++ = *u++;
- }
- return *this;
- }
-
- void <T>Vec::apply(<T>Procedure f)
- {
- <T>* top = &(s[len]);
- <T>* t = s;
- while (t < top) (*f)(*t++);
- }
-
- // can't just realloc since there may be need for constructors/destructors
- void <T>Vec::resize(int newl)
- {
- <T>* news = new <T> [newl];
- <T>* p = news;
- int minl = (len < newl)? len : newl;
- <T>* top = &(s[minl]);
- <T>* t = s;
- while (t < top) *p++ = *t++;
- delete [] s;
- s = news;
- len = newl;
- }
-
- <T>Vec concat(<T>Vec & a, <T>Vec & b)
- {
- int newl = a.len + b.len;
- <T>* news = new <T> [newl];
- <T>* p = news;
- <T>* top = &(a.s[a.len]);
- <T>* t = a.s;
- while (t < top) *p++ = *t++;
- top = &(b.s[b.len]);
- t = b.s;
- while (t < top) *p++ = *t++;
- return <T>Vec(newl, news);
- }
-
-
- <T>Vec combine(<T>Combiner f, <T>Vec& a, <T>Vec& b)
- {
- int newl = (a.len < b.len)? a.len : b.len;
- <T>* news = new <T> [newl];
- <T>* p = news;
- <T>* top = &(a.s[newl]);
- <T>* t = a.s;
- <T>* u = b.s;
- while (t < top) *p++ = (*f)(*t++, *u++);
- return <T>Vec(newl, news);
- }
-
- <T> <T>Vec::reduce(<T>Combiner f, <T&> base)
- {
- <T> r = base;
- <T>* top = &(s[len]);
- <T>* t = s;
- while (t < top) r = (*f)(r, *t++);
- return r;
- }
-
- <T>Vec reverse(<T>Vec& a)
- {
- <T>* news = new <T> [a.len];
- if (a.len != 0)
- {
- <T>* lo = news;
- <T>* hi = &(news[a.len - 1]);
- while (lo < hi)
- {
- <T> tmp = *lo;
- *lo++ = *hi;
- *hi-- = tmp;
- }
- }
- return <T>Vec(a.len, news);
- }
-
- void <T>Vec::reverse()
- {
- if (len != 0)
- {
- <T>* lo = s;
- <T>* hi = &(s[len - 1]);
- while (lo < hi)
- {
- <T> tmp = *lo;
- *lo++ = *hi;
- *hi-- = tmp;
- }
- }
- }
-
- int <T>Vec::index(<T&> targ)
- {
- for (int i = 0; i < len; ++i) if (<T>EQ(targ, s[i])) return i;
- return -1;
- }
-
- <T>Vec map(<T>Mapper f, <T>Vec& a)
- {
- <T>* news = new <T> [a.len];
- <T>* p = news;
- <T>* top = &(a.s[a.len]);
- <T>* t = a.s;
- while(t < top) *p++ = (*f)(*t++);
- return <T>Vec(a.len, news);
- }
-
- int operator == (<T>Vec& a, <T>Vec& b)
- {
- if (a.len != b.len)
- return 0;
- <T>* top = &(a.s[a.len]);
- <T>* t = a.s;
- <T>* u = b.s;
- while (t < top) if (!(<T>EQ(*t++, *u++))) return 0;
- return 1;
- }
-
- void <T>Vec::fill(<T&> val, int from, int n)
- {
- int to;
- if (n < 0)
- to = len - 1;
- else
- to = from + n - 1;
- if ((unsigned)from > (unsigned)to)
- range_error();
- <T>* t = &(s[from]);
- <T>* top = &(s[to]);
- while (t <= top) *t++ = val;
- }
-
- <T>Vec <T>Vec::at(int from, int n)
- {
- int to;
- if (n < 0)
- {
- n = len - from;
- to = len - 1;
- }
- else
- to = from + n - 1;
- if ((unsigned)from > (unsigned)to)
- range_error();
- <T>* news = new <T> [n];
- <T>* p = news;
- <T>* t = &(s[from]);
- <T>* top = &(s[to]);
- while (t <= top) *p++ = *t++;
- return <T>Vec(n, news);
- }
-
- <T>Vec merge(<T>Vec & a, <T>Vec & b, <T>Comparator f)
- {
- int newl = a.len + b.len;
- <T>* news = new <T> [newl];
- <T>* p = news;
- <T>* topa = &(a.s[a.len]);
- <T>* as = a.s;
- <T>* topb = &(b.s[b.len]);
- <T>* bs = b.s;
-
- for (;;)
- {
- if (as >= topa)
- {
- while (bs < topb) *p++ = *bs++;
- break;
- }
- else if (bs >= topb)
- {
- while (as < topa) *p++ = *as++;
- break;
- }
- else if ((*f)(*as, *bs) <= 0)
- *p++ = *as++;
- else
- *p++ = *bs++;
- }
- return <T>Vec(newl, news);
- }
-
- static int gsort(<T>*, int, <T>Comparator);
-
- void <T>Vec::sort (<T>Comparator compar)
- {
- gsort(s, len, compar);
- }
-
-
- // An adaptation of Schmidt's new quicksort
-
- static inline void SWAP(<T>* A, <T>* B)
- {
- <T> tmp = *A; *A = *B; *B = tmp;
- }
-
- /* This should be replaced by a standard ANSI macro. */
- #define BYTES_PER_WORD 8
- #define BYTES_PER_LONG 4
-
- /* The next 4 #defines implement a very fast in-line stack abstraction. */
-
- #define STACK_SIZE (BYTES_PER_WORD * BYTES_PER_LONG)
- #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
- #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
- #define STACK_NOT_EMPTY (stack < top)
-
- /* Discontinue quicksort algorithm when partition gets below this size.
- This particular magic number was chosen to work best on a Sun 4/260. */
- #define MAX_THRESH 4
-
-
- /* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
-
- 1. Non-recursive, using an explicit stack of pointer that
- store the next array partition to sort. To save time, this
- maximum amount of space required to store an array of
- MAX_INT is allocated on the stack. Assuming a 32-bit integer,
- this needs only 32 * sizeof (stack_node) == 136 bits. Pretty
- cheap, actually.
-
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
-
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segements.
-
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (n)
- stack size is needed! */
-
- static int gsort (<T> *base_ptr, int total_elems, <T>Comparator cmp)
- {
- /* Stack node declarations used to store unfulfilled partition obligations. */
- struct stack_node { <T> *lo; <T> *hi; };
- <T> pivot_buffer;
- int max_thresh = MAX_THRESH;
-
- if (total_elems > MAX_THRESH)
- {
- <T> *lo = base_ptr;
- <T> *hi = lo + (total_elems - 1);
- <T> *left_ptr;
- <T> *right_ptr;
- stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
- stack_node *top = stack + 1;
-
- while (STACK_NOT_EMPTY)
- {
- {
- <T> *pivot = &pivot_buffer;
- {
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
-
- <T> *mid = lo + ((hi - lo) >> 1);
-
- if ((*cmp) (*mid, *lo) < 0)
- SWAP (mid, lo);
- if ((*cmp) (*hi, *mid) < 0)
- {
- SWAP (mid, hi);
- if ((*cmp) (*mid, *lo) < 0)
- SWAP (mid, lo);
- }
- *pivot = *mid;
- pivot = &pivot_buffer;
- }
- left_ptr = lo + 1;
- right_ptr = hi - 1;
-
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
- {
- while ((*cmp) (*left_ptr, *pivot) < 0)
- left_ptr += 1;
-
- while ((*cmp) (*pivot, *right_ptr) < 0)
- right_ptr -= 1;
-
- if (left_ptr < right_ptr)
- {
- SWAP (left_ptr, right_ptr);
- left_ptr += 1;
- right_ptr -= 1;
- }
- else if (left_ptr == right_ptr)
- {
- left_ptr += 1;
- right_ptr -= 1;
- break;
- }
- }
- while (left_ptr <= right_ptr);
-
- }
-
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
-
- if ((right_ptr - lo) <= max_thresh)
- {
- if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */
- POP (lo, hi);
- else /* Ignore small left partition. */
- lo = left_ptr;
- }
- else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */
- hi = right_ptr;
- else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */
- {
- PUSH (lo, right_ptr);
- lo = left_ptr;
- }
- else /* Push larger right partition indices. */
- {
- PUSH (left_ptr, hi);
- hi = right_ptr;
- }
- }
- }
-
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
-
-
- {
- <T> *end_ptr = base_ptr + 1 * (total_elems - 1);
- <T> *run_ptr;
- <T> *tmp_ptr = base_ptr;
- <T> *thresh = (end_ptr < (base_ptr + max_thresh))?
- end_ptr : (base_ptr + max_thresh);
-
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
-
- for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1)
- if ((*cmp) (*run_ptr, *tmp_ptr) < 0)
- tmp_ptr = run_ptr;
-
- if (tmp_ptr != base_ptr)
- SWAP (tmp_ptr, base_ptr);
-
- /* Insertion sort, running from left-hand-side up to `right-hand-side.'
- Pretty much straight out of the original GNU qsort routine. */
-
- for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr; )
- {
-
- while ((*cmp) (*run_ptr, *(tmp_ptr -= 1)) < 0)
- ;
-
- if ((tmp_ptr += 1) != run_ptr)
- {
- <T> *trav;
-
- for (trav = run_ptr + 1; --trav >= run_ptr;)
- {
- <T> c = *trav;
- <T> *hi, *lo;
-
- for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
- }
-
- }
- }
- return 1;
- }
-