home *** CD-ROM | disk | FTP | other *** search
- /* expr.c -operands, expressions-
- Copyright (C) 1987 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- * This is really a branch office of as-read.c. I split it out to clearly
- * distinguish the world of expressions from the world of statements.
- * (It also gives smaller files to re-compile.)
- * Here, "operand"s are of expressions, not instructions.
- */
-
- #include <ctype.h>
- #include <string.h>
- #include "stuff/round.h"
- #include "as.h"
- #include "flonum.h"
- #include "struc-symbol.h"
- #include "expr.h"
- #include "read.h"
- #include "obstack.h"
- #include "symbols.h"
- #include "hex_value.h"
- #include "md.h"
- #include "messages.h"
- #include "sections.h"
-
- char *seg_name[] = {
- "absolute",
- "section",
- "difference",
- "unknown",
- "absent",
- "bignum/flonum",
- };
-
- #ifdef SUSPECT
- static int seg_N_TYPE[] = {
- N_ABS, /* absolute */
- N_SECT, /* section */
- -1, /* difference */
- N_UNDF, /* unknown */
- -1, /* absent */
- -1 /* bignum/flonum */
- };
- #endif
-
- segT N_TYPE_seg[] =
- {
- /* N_UNDF == 0, N_ABS == 2 */
- SEG_UNKNOWN, -1, SEG_ABSOLUTE, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- /* N_SECT == 0xe */
- SEG_SECT, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
- };
-
- /*
- * SEG_BIG expressions encode either a floating point number or an integer
- * larger than 32 bits in this manner:
- * For a floating point number:
- * X_add_number is < 0
- * The result is in the global variable generic_floating_point_number.
- * The value in X_add_number is -'c' where c is the character that
- * introduced the constant. e.g. "0f6.9" will have -'f' as a
- * X_add_number value.
- * For an integer larger than 32 bits:
- * X_add_number > 0
- * The result is in the global variable generic_bignum.
- * The value in X_add_number is a count of how many littlenums it
- * took to represent the bignum.
- */
-
- /* LITTLENUM_TYPE generic_buffer [6]; JF this is a hack */
- /* Seems atof_machine can backscan through generic_bignum and hit whatever
- happens to be loaded before it in memory. And its way too complicated
- for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
- and never write into the early words, thus they'll always be zero.
- I hate Dean's floating-point code. Bleh.
- */
- LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6] = { 0 };
-
- FLONUM_TYPE generic_floating_point_number = {
- &generic_bignum[6], /* low (JF: Was 0) */
- &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1],/* high JF: (added +6) */
- 0, /* leader */
- 0, /* exponent */
- 0 /* sign */
- };
-
- /*
- * The type operatorT is for the types of operators in expressions.
- */
- typedef enum {
- O_illegal, /* (0) what we get for illegal op */
-
- O_multiply, /* (1) * Ordered by rank*/
- O_divide, /* (2) / */
- O_modulus, /* (3) % */
-
- O_add, /* (4) + */
- O_subtract, /* (5) - */
-
- O_right_shift, /* (6) >> */
- O_left_shift, /* (7) << */
-
- O_less_than, /* (8) < */
- O_greater_than, /* (9) > */
- O_less_than_or_equal, /* (10) <= */
- O_greater_than_or_equal, /* (11) >= */
-
- O_equal, /* (12) == */
- O_not_equal, /* (13) != */ /* or <> */
-
- O_bit_and, /* (14) & */
-
- O_bit_exclusive_or, /* (15) ^ */
-
- O_bit_inclusive_or, /* (16) | */
- O_bit_or_not, /* (17) ! */
- two_char_operator /* (18) encoding for two char operator */
- } operatorT;
-
- /*
- * op_size is indexed by an operatorT and tells the size of the operator
- * which is used to advance the input_line_pointer over the operator.
- */
- static int op_size [] =
- { 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1 };
-
- /*
- * op_rank is indexed by an operatorT and tells the rank of the operator.
- *
- * Rank Examples
- * 8 * / %
- * 7 + -
- * 6 >> <<
- * 5 < > <= >=
- * 4 == !=
- * 3 &
- * 2 ^
- * 1 | !
- * 0 operand, (expression)
- */
- typedef char operator_rankT;
- static operator_rankT op_rank [] =
- { 0, 8, 8, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1 };
-
- /*
- * op_encoding is indexed by a an ASCII character and maps it to an operator.
- */
- #define __ O_illegal
- static const operatorT op_encoding [256] = {
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
-
- __, two_char_operator, __, __, __, O_modulus, O_bit_and, __,
- __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
- __, __, __, __, __, __, __, __,
- __, __, __, __, two_char_operator, two_char_operator, two_char_operator, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, O_bit_exclusive_or, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_bit_inclusive_or, __, __, __,
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
- };
-
- static segT expr(
- operator_rankT rank,
- expressionS *resultP);
-
- static segT operand(
- expressionS *expressionP);
-
- static void clean_up_expression(
- expressionS *expressionP);
-
- static segT expr_part(
- struct symbol **symbol_1_PP,
- struct symbol *symbol_2_P);
-
- static operatorT two_char_op_encoding(
- char first_op_char);
-
- segT /* Return resultP -> X_seg */
- expression(
- expressionS *resultP) /* deliver result here */
- {
- segT segment;
-
- segment = expr(0, resultP);
-
- /* what about caller's that just want to ignore this and print the're own
- error message? ok I guess */
- if(segment == SEG_DIFFSECT &&
- resultP->X_add_symbol == NULL &&
- (resultP->X_subtract_symbol->sy_type & N_TYPE) != N_UNDF){
- as_warn("Subtracting symbol \"%s\"(segment\"%s\") is too "
- "hard. Absolute segment assumed.",
- resultP->X_subtract_symbol->sy_name,
- seg_name[(int)N_TYPE_seg[
- resultP->X_subtract_symbol->sy_type & N_TYPE]]);
- segment = SEG_ABSOLUTE;
- /* Leave exp .X_add_number alone. */
- }
- return(segment);
- }
-
- /* Expression parser. */
-
- /*
- * We allow an empty expression, and just assume (absolute,0) silently.
- * Unary operators and parenthetical expressions are treated as operands.
- * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
- *
- * Most expressions are either register (which does not even reach here)
- * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
- *
- * After expr(RANK,resultP) input_line_pointer -> operator of rank <= RANK.
- * Also, we have consumed any leading or trailing spaces (operand does that)
- * and done all intervening operators.
- */
- static
- segT /* Return resultP -> X_seg */
- expr(
- operator_rankT rank, /* larger # is higher rank */
- expressionS *resultP) /* deliver result here */
- {
- expressionS right;
- operatorT op_left;
- char c_left; /* 1st operator character. */
- operatorT op_right;
- char c_right;
-
- know(rank >= 0);
-
- (void)operand(resultP);
- know(*input_line_pointer != ' '); /* Operand() gobbles spaces. */
-
- c_left = *input_line_pointer; /* Potential operator character. */
- op_left = (operatorT)op_encoding[(int)c_left];
- if(op_left == two_char_operator)
- op_left = two_char_op_encoding(c_left);
-
- while(op_left != O_illegal && op_rank[op_left] > rank){
-
- input_line_pointer += op_size[op_left];
- /* -> after 1st character of operator. */
-
- if(SEG_NONE == expr(op_rank[op_left], &right)){
- as_warn("Missing operand value assumed absolute 0.");
- resultP->X_add_number = 0;
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- resultP->X_seg = SEG_ABSOLUTE;
- }
- know(*input_line_pointer != ' ');
-
- c_right = *input_line_pointer;
- op_right = (operatorT)op_encoding[(int)c_right];
- if(op_right == two_char_operator)
- op_right = two_char_op_encoding(c_right);
-
- /* -> after 1st character of operator. */
- know(op_right == 0 || op_rank [op_right] <= op_rank[op_left]);
-
- /* input_line_pointer -> after right-hand quantity. */
- /* left-hand quantity in resultP */
- /* right-hand quantity in right. */
- /* operator in op_left. */
-
- /*
- * Operations are not supported on bignums or floating-point
- * operands.
- */
- if(resultP->X_seg == SEG_BIG){
- as_warn("Left operand of %c is a %s integer 0 assumed",
- c_left, resultP->X_add_number > 0 ? "bignum" :
- "float");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_symbol = 0;
- resultP->X_subtract_symbol = 0;
- resultP->X_add_number = 0;
- }
- if(right.X_seg == SEG_BIG){
- as_warn("Right operand of %c is a %s integer 0 assumed",
- c_left, right.X_add_number > 0 ? "bignum" :
- "float");
- right.X_seg = SEG_ABSOLUTE;
- right.X_add_symbol = 0;
- right.X_subtract_symbol = 0;
- right.X_add_number = 0;
- }
- if(op_left == O_subtract){
- /*
- * Convert - into + by exchanging symbols and negating
- * number. I know -infinity can't be negated in 2's
- * complement: but then it can't be subtracted either.
- * This trick does not cause any further inaccuracy.
- */
- struct symbol *symbolP;
-
- right.X_add_number = - right.X_add_number;
- symbolP = right.X_add_symbol;
- right.X_add_symbol = right.X_subtract_symbol;
- right.X_subtract_symbol = symbolP;
- if(symbolP){
- /* This is not used, as it drops in to the next if */
- right.X_seg = SEG_DIFFSECT;
- }
- op_left = O_add;
- }
- if(op_left == O_add){
- segT seg1;
- segT seg2;
-
- /* not SEG_NONE and not SEG_BIG */
- know(resultP->X_seg == SEG_SECT ||
- resultP->X_seg == SEG_UNKNOWN ||
- resultP->X_seg == SEG_DIFFSECT ||
- resultP->X_seg == SEG_ABSOLUTE);
- /* not SEG_NONE and not SEG_BIG */
- know(right.X_seg == SEG_SECT ||
- right.X_seg == SEG_UNKNOWN ||
- right.X_seg == SEG_DIFFSECT ||
- right.X_seg == SEG_ABSOLUTE);
-
- clean_up_expression(&right);
- clean_up_expression(resultP);
-
- /* could this just return -1 instead of SEG_PASS1? and tested in the below if
- statement */
- seg1 = expr_part(&resultP->X_add_symbol,
- right.X_add_symbol);
- seg2 = expr_part(&resultP->X_subtract_symbol,
- right.X_subtract_symbol);
- if(seg1 == -1 || seg2 == -1){
- as_warn("Can't relocate expression. Absolute 0 assumed.");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_number = 0;
- }
- else{
- if(seg2 == SEG_ABSOLUTE){
- resultP->X_seg = seg1;
- }
- else{
- /* also know seg2 != -1 (SEG_PASS1) */
- know(seg2 != SEG_ABSOLUTE);
- /* seg2 is for the subtract symbols, since seg2 != SEG_ABSOLUTE as would be
- returned when there is no subtract symbols then expr_part() must have
- combined a symbol into resultP->X_subtract_symbol that is either undefined
- or defined in a section. */
- know(resultP->X_subtract_symbol);
- /*
- * If we are not to use the new incompatible features
- * then "symbol1 - symbol2" must both be in the same
- * section and will turn out as absolute.
- */
- if(!flagseen['k']){
- if(seg1 != SEG_UNKNOWN &&
- seg1 != SEG_ABSOLUTE &&
- seg2 != SEG_UNKNOWN &&
- seg1 != seg2 &&
- resultP->X_add_symbol->sy_other !=
- resultP->X_subtract_symbol->sy_other){
- know(seg1 == SEG_SECT);
- know(seg2 == SEG_SECT);
- know(resultP->X_add_symbol);
- know(resultP->X_subtract_symbol);
- as_warn("Expression too complex: "
- "forgetting %s - %s",
- resultP->X_add_symbol->sy_name,
- resultP->X_subtract_symbol->sy_name);
- resultP->X_seg = SEG_ABSOLUTE;
- /* Clean_up_expression() will do the rest */
- }
- else{
- /* this can result in returning an expression that is NULL - symbol and the
- caller must deal with this being illegal. maybe this should be put in
- expression() routine (not a macro). Note the code in cons() */
- resultP->X_seg = SEG_DIFFSECT;
- } /* If relocation too complex. */
- }
- else{
- resultP->X_seg = SEG_DIFFSECT;
- }
-
- } /* If seg2 == SEG_ABSOLUTE. */
- } /* If need pass 2. */
- resultP->X_add_number += right.X_add_number;
- clean_up_expression(resultP);
- }
- else{ /* Not +. */
- if(resultP->X_seg == SEG_UNKNOWN ||
- right.X_seg == SEG_UNKNOWN){
- as_warn("Can't relocate expression. Absolute 0 assumed.");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_number = 0;
- }
- else{
- /*
- * Will be SEG_ABSOLUTE. (or error)
- */
- try_to_make_absolute(resultP);
- try_to_make_absolute(&right);
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- if(resultP->X_seg != SEG_ABSOLUTE ||
- right.X_seg != SEG_ABSOLUTE){
- as_warn("Relocation error. Absolute 0 assumed");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_number = 0;
- }
- else{
- /*
- * Both are absolute so perform the operation
- * on the constants.
- */
- switch(op_left){
- case O_bit_inclusive_or:
- resultP->X_add_number |= right.X_add_number;
- break;
-
- case O_modulus:
- if(right.X_add_number){
- resultP->X_add_number %=
- right.X_add_number;
- }
- else{
- as_warn("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_bit_and:
- resultP->X_add_number &= right.X_add_number;
- break;
-
- case O_multiply:
- resultP->X_add_number *= right.X_add_number;
- break;
-
- case O_divide:
- if(right.X_add_number){
- resultP->X_add_number /=
- right.X_add_number;
- }
- else{
- as_warn("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_left_shift:
- resultP->X_add_number <<=
- right.X_add_number;
- break;
-
- case O_right_shift:
- resultP->X_add_number >>=
- right.X_add_number;
- break;
-
- case O_bit_exclusive_or:
- resultP->X_add_number ^= right.X_add_number;
- break;
-
- case O_bit_or_not:
- resultP->X_add_number |=
- ~right.X_add_number;
- break;
-
- case O_less_than:
- resultP->X_add_number =
- (resultP->X_add_number <
- right.X_add_number);
- break;
-
- case O_greater_than:
- resultP->X_add_number =
- (resultP->X_add_number >
- right.X_add_number);
- break;
-
- case O_less_than_or_equal:
- resultP->X_add_number =
- (resultP->X_add_number <=
- right.X_add_number);
- break;
-
- case O_greater_than_or_equal:
- resultP->X_add_number =
- (resultP->X_add_number >=
- right.X_add_number);
- break;
-
- case O_equal:
- resultP->X_add_number =
- (resultP->X_add_number ==
- right.X_add_number);
- break;
-
- case O_not_equal:
- resultP->X_add_number =
- (resultP->X_add_number !=
- right.X_add_number);
- break;
-
- default:
- BAD_CASE( op_left );
- break;
- } /* switch(op_left) */
- }
- } /* If we have to force need_pass_2 */
- } /* If operator was + */
- op_left = op_right;
- } /* While next operator is >= this rank */
- return(resultP->X_seg);
- }
-
- /*
- * Summary of operand().
- *
- * in: Input_line_pointer points to 1st char of operand, which may
- * be a space.
- *
- * out: A expressionS. X_seg determines how to understand the rest of the
- * expressionS.
- * The operand may have been empty: in this case X_seg == SEG_NONE.
- * Input_line_pointer -> (next non-blank) char after operand.
- *
- */
- static
- segT
- operand(
- expressionS *expressionP)
- {
- char c, q;
- char *name; /* points to name of symbol */
- struct symbol *symbolP; /* Points to symbol */
-
-
- SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
- c = *input_line_pointer++;/* Input_line_pointer -> past char in c. */
-
- if(isdigit(c)){
- valueT number; /* offset or (absolute) value */
- int digit; /* value of next digit in current radix */
- /* invented for humans only, hope */
- /* optimising compiler flushes it! */
- int radix; /* 8, 10 or 16 */
- /* 0 means we saw start of a floating- */
- /* point constant. */
- int maxdig; /* Highest permitted digit value. */
- int too_many_digits;/* If we see >= this number of */
- /* digits, assume it is a bignum. */
- char *digit_2; /* -> 2nd digit of number. */
- int small; /* TRUE if fits in 32 bits. */
- int force_bignum; /* TRUE if number is 0xb... */
-
- force_bignum = FALSE;
- /*
- * These two initiaizations are to shut up compiler warning as the
- * may be used with out being set. There used only if radix != 0
- * when the number is not a floating-point number.
- */
- maxdig = 0;
- too_many_digits = 0;
-
- if(c == '0'){ /* non-decimal radix */
- c = *input_line_pointer++;
- if(c == 'x' || c=='X'){
- c = *input_line_pointer++; /* read past "0x" or "0X" */
- maxdig = 16;
- radix = 16;
- too_many_digits = 9;
- }
- /*
- * If we have "0b" and some hex digits then treat it as a hex
- * number and return a bignum. This is for hex immediate
- * bit-patterns for floating-point immediate constants.
- */
- else if((c == 'b' || c == 'B') &&
- (*input_line_pointer != '\0') &&
- strchr("0123456789abcdefABCDEF",
- *input_line_pointer) != NULL){
- force_bignum = TRUE;
- c = *input_line_pointer++; /* read past "0b" or "0B" */
- maxdig = 16;
- radix = 16;
- too_many_digits = 9;
- }
- else{
- /*
- * If it says '0f' and the line ends or it DOESN'T look like
- * a floating point #, its a local label ref.
- */
- if(c == 'f' &&
- (*input_line_pointer == '\0' ||
- (strchr("+-.0123456789", *input_line_pointer) == NULL &&
- strchr(md_EXP_CHARS, *input_line_pointer) == NULL) )){
- maxdig = 10;
- radix = 10;
- too_many_digits = 11;
- c = '0';
- input_line_pointer -= 2;
- }
- else if(c != '\0' && strchr(md_FLT_CHARS, c) != NULL){
- radix = 0;/* Start of floating-point constant. */
- /* input_line_pointer -> 1st char of number */
- expressionP->X_add_number =
- - (isupper(c) ? tolower(c) : c);
- }
- else{ /* By elimination, assume octal radix. */
- radix = 8;
- maxdig = 10; /* Un*x sux. Compatibility. */
- too_many_digits = 11;
- }
- }
- /* c == char after "0" or "0x" or "0X" or "0e" etc.*/
- }
- else{
- maxdig = 10;
- radix = 10;
- too_many_digits = 11;
- }
- if(radix != 0){ /* Fixed-point integer constant. */
- /* May be bignum, or may fit in 32 bits. */
- /*
- * Most numbers fit into 32 bits, and we want this case to be
- * fast. So we pretend it will fit into 32 bits. If, after
- * making up a 32 bit number, we realize that we have scanned
- * more digits than comfortably fit into 32 bits, we re-scan the
- * digits coding them into a bignum. For decimal and octal
- * numbers we are conservative: some numbers may be assumed
- * bignums when in fact they do fit into 32 bits. Numbers of
- * any radix can have excess leading zeros: we strive to
- * recognise this and cast them back into 32 bits. We must
- * check that the bignum really is more than 32 bits, and
- * change it back to a 32-bit number if it fits. The number we
- * are looking for is expected to be positive, but if it fits
- * into 32 bits as an unsigned number, we let it be a 32-bit
- * number. The cavalier approach is for speed in ordinary cases.
- */
- digit_2 = input_line_pointer;
- for(number = 0;
- (digit = hex_value[(int)c]) < maxdig;
- c = *input_line_pointer++){
- number = number * radix + digit;
- }
- /* c contains character after number. */
- /* Input_line_pointer -> char after c. */
- small = input_line_pointer - digit_2 < too_many_digits;
- if(force_bignum == TRUE)
- small = FALSE;
- if(small == FALSE){
- /*
- * Manufacture a bignum.
- */
- /* -> high order littlenum of the bignum. */
- LITTLENUM_TYPE *leader;
- /* -> littlenum we are frobbing now. */
- LITTLENUM_TYPE *pointer;
- long carry;
-
- leader = generic_bignum;
- generic_bignum [0] = 0;
- /* We could just use digit_2, but lets be mnemonic. */
- input_line_pointer = --digit_2; /* -> 1st digit. */
- c = *input_line_pointer++;
- for( ;
- (carry = hex_value[(int)c]) < maxdig;
- c = * input_line_pointer++){
- for(pointer = generic_bignum;
- pointer <= leader;
- pointer++){
- long work;
-
- work = carry + radix * *pointer;
- *pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
- if(carry){
- if(leader < generic_bignum +
- SIZE_OF_LARGE_NUMBER - 1){
- /* Room to grow a longer bignum. */
- *++leader = carry;
- }
- }
- }
- /* Again, C is char after number, */
- /* input_line_pointer -> after C. */
- /* know(BITS_PER_INT == 32); */
- know(LITTLENUM_NUMBER_OF_BITS == 16);
- /* Hence the constant "2" in the next line. */
- if(leader < generic_bignum + 2 && force_bignum == FALSE)
- { /* Will fit into 32 bits. */
- number = ((generic_bignum[1] & LITTLENUM_MASK) <<
- LITTLENUM_NUMBER_OF_BITS) |
- (generic_bignum[0] & LITTLENUM_MASK);
- small = TRUE;
- }
- else{
- /* Number of littlenums in the bignum. */
- number = leader - generic_bignum + 1;
- }
- }
- if(small){
- /*
- * Here with number, in correct radix. c is the next char.
- * Note that unlike Un*x, we allow "011f" "0x9f" to both
- * mean the same as the (conventional) "9f". This is simply
- * easier than checking for strict canonical form.
- */
- if(number < 10){
- if(c == 'b'){
- /*
- * Backward ref to local label.
- * Because it is backward, expect it to be DEFINED.
- */
- /*
- * Construct a local label.
- */
- name = local_label_name((int)number, 0);
- symbolP = symbol_table_lookup(name);
- if((symbolP != NULL) &&
- (symbolP->sy_type & N_TYPE) != N_UNDF){
- /* Expected path: symbol defined. */
- /* Local labels are never absolute. Don't waste
- time checking absoluteness. */
- know((symbolP->sy_type & N_TYPE) == N_SECT);
- expressionP->X_add_symbol = symbolP;
- expressionP->X_add_number = 0;
- expressionP->X_seg = SEG_SECT;
- }
- else{ /* Either not seen or not defined. */
- as_warn("Backw. ref to unknown label \"%d:\", 0"
- " assumed.", number);
- expressionP->X_add_number = 0;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- }
- else if(c == 'f'){
- /*
- * Forward reference. Expect symbol to be
- * undefined or unknown. Undefined: seen it
- * before. Unknown: never seen it in this pass.
- * Construct a local label name, then an
- * undefined symbol. Don't create a XSEG frag
- * for it: caller may do that.
- * Just return it as never seen before.
- */
- name = local_label_name((int)number, 1);
- symbolP = symbol_table_lookup(name);
- if(symbolP != NULL){
- /* We have no need to check symbol
- properties. */
- know((symbolP->sy_type & N_TYPE) == N_UNDF ||
- (symbolP->sy_type & N_TYPE) == N_SECT);
- }
- else{
- symbolP = symbol_new(name, N_UNDF, 0,0,0,
- &zero_address_frag);
- symbol_table_insert(symbolP);
- }
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = SEG_UNKNOWN;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- }
- else{ /* Really a number, not a local label. */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer--; /* restore following char */
- }
- }
- else{ /* a number >= 10 */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer--; /* restore following char */
- }
- } /* not a small number encode returning a bignum */
- else{
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_BIG;
- input_line_pointer--; /* -> char following number. */
- } /* if (small) */
- } /* (If integer constant) */
- else{ /* input_line_pointer -> floating-point constant. */
-
- int error_code;
-
- error_code = atof_generic(&input_line_pointer, ".", md_EXP_CHARS,
- &generic_floating_point_number);
-
- if(error_code){
- if(error_code == ERROR_EXPONENT_OVERFLOW){
- as_warn("Bad floating-point constant: exponent "
- "overflow, probably assembling junk" );
- }
- else{
- as_warn("Bad floating-point constant: unknown error "
- "code=%d.", error_code);
- }
- }
- expressionP->X_seg = SEG_BIG;
- /* input_line_pointer -> just after constant, */
- /* which may point to whitespace. */
- know(expressionP->X_add_number < 0);
- /* < 0 means "floating point". */
- } /* if (not floating-point constant) */
- }
- else if(c == '.' && !is_part_of_name(*input_line_pointer)){
- /*
- JF: '.' is pseudo symbol with value of current location in current
- segment. . .
- */
- symbolP = symbol_new("L0\001",
- N_SECT,
- frchain_now->frch_nsect,
- 0,
- (valueT)(obstack_next_free(&frags) -
- frag_now->fr_literal),
- frag_now);
- expressionP->X_add_number = 0;
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = SEG_SECT;
- }
- /* here if did not begin with a digit */
- else if(is_name_beginner(c) || c == '"'){
- /*
- * Identifier begins here.
- * This is kludged for speed, so code is repeated.
- */
- q = c;
- if(q == '"')
- name = input_line_pointer-- ;
- else
- name = -- input_line_pointer;
- c = get_symbol_end();
- symbolP = symbol_table_lookup(name);
- if(symbolP != NULL){
- /*
- * If we have an absolute symbol, then we know it's value now.
- */
- segT seg;
-
- seg = N_TYPE_seg[(int)symbolP->sy_type & N_TYPE];
- expressionP->X_seg = seg;
- if(seg == SEG_ABSOLUTE){
- expressionP->X_add_number = symbolP->sy_value;
- }
- else{
- expressionP->X_add_number = 0;
- expressionP->X_add_symbol = symbolP;
- }
- }
- else{
- symbolP = symbol_new(name, N_UNDF, 0,0,0, &zero_address_frag);
- expressionP->X_add_symbol = symbolP;
- expressionP->X_add_number = 0;
- expressionP->X_seg = SEG_UNKNOWN;
- symbol_table_insert(symbolP);
- }
- *input_line_pointer = c;
- if(q == '"')
- input_line_pointer[-1] = '"';
- expressionP->X_subtract_symbol = NULL;
- }
- /* didn't begin with digit & not a name */
- else if (c == '('){
- (void)expression(expressionP);
- /* Expression() will pass trailing whitespace */
- if(*input_line_pointer++ != ')'){
- as_warn("Missing ')' assumed");
- input_line_pointer--;
- }
- /* here with input_line_pointer -> char after "(...)" */
- }
- /* unary operator: hope for SEG_ABSOLUTE */
- else if(c == '~' || c == '-' || c == '!'){
- switch(operand(expressionP)){
- case SEG_ABSOLUTE:
- /* input_line_pointer -> char after operand */
- if(c == '-' ){
- /*
- * Notice: '-' may overflow: no warning is given. This is
- * compatible with other people's assemblers.
- */
- expressionP->X_add_number = - expressionP->X_add_number;
- }
- else if(c == '!'){
- expressionP->X_add_number = ! expressionP->X_add_number;
- }
- else{
- expressionP->X_add_number = ~ expressionP->X_add_number;
- }
- break;
- case SEG_SECT:
- case SEG_UNKNOWN:
- if(c == '-'){ /* JF I hope this hack works */
- expressionP->X_subtract_symbol = expressionP->X_add_symbol;
- expressionP->X_add_symbol = 0;
- expressionP->X_seg = SEG_DIFFSECT;
- break;
- }
- default: /* unary on non-absolute is unsuported */
- as_warn("Unary operator %c ignored because bad operand follows",
- c);
- break;
- /* Expression undisturbed from operand(). */
- }
- }
- /*
- * Warning: to conform to other people's assemblers NO ESCAPEMENT is
- * permitted for a single quote. The next character, parity errors and
- * all, is taken as the value of the operand. VERY KINKY.
- */
- else if(c == '\''){
- expressionP->X_add_number = *input_line_pointer++;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- /* can't imagine any other kind of operand */
- else{
- expressionP->X_seg = SEG_NONE;
- input_line_pointer--;
- }
- /*
- * It is more 'efficient' to clean up the expressions when they are
- * created. Doing it here saves lines of code.
- */
- clean_up_expression(expressionP);
- SKIP_WHITESPACE(); /* -> 1st char after operand. */
- know(*input_line_pointer != ' ');
- return(expressionP->X_seg);
- }
-
- /* Internal. Simplify a struct expression for use by expr() */
-
- /*
- * In: address of a expressionS.
- * The X_seg field of the expressionS may only take certain values.
- * Now, we permit SEG_NONE to make code smaller & faster.
- * Elsewise we waste time special-case testing. Sigh.
- * Out: expressionS may have been modified:
- * 'foo-foo' symbol references cancelled to 0,
- * which changes X_seg from SEG_DIFFSECT to SEG_ABSOLUTE;
- * Unused fields zeroed to help expr().
- */
- static
- void
- clean_up_expression(
- expressionS *expressionP)
- {
- switch(expressionP->X_seg){
- case SEG_NONE:
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- break;
-
- case SEG_BIG:
- case SEG_ABSOLUTE:
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- break;
-
- case SEG_SECT:
- case SEG_UNKNOWN:
- expressionP->X_subtract_symbol = NULL;
- break;
-
- case SEG_DIFFSECT:
- /*
- * It does not hurt to 'cancel' NULL==NULL
- * when comparing symbols for 'eq'ness.
- * It is faster to re-cancel them to NULL
- * than to check for this special case.
- */
- if(expressionP->X_subtract_symbol == expressionP->X_add_symbol){
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- break;
-
- default:
- BAD_CASE(expressionP->X_seg);
- break;
- }
- }
-
- /*
- * expr_part ()
- *
- * Internal. Made a function because this code is used in 2 places.
- * Generate error or correct X_?????_symbol of expressionS.
- */
-
- /*
- Combine and subsume symbol2 into symbol1 where the symbols come from
- expression's add or subtract symbols.
- The combining always occurs even if it would be an error.
- Either symbol maybe NULL which means there is no symbol.
- In that case symbol1 is set to the non NULL symbol.
- If both are NULL then SEG_ABSOLUTE is returned.
- Either symbol maybe undefined.
- The only combinations that are not errors are when one symbol does not exist.
- if one symbol is undefined and the other doesn't exist SEG_UNKNOWN is
- returned.
- For errant combinations symbol1 is set to NULL and SEG_ABSOLUTE (or -1
- (SEG_PASS1) when one of the symbols is undefined and the other exists)
-
- * symbol_1 += symbol_2 ... well ... sort of.
- * symbol_1 -= symbol_2 ... well ... sort of.
- */
-
- static
- segT
- expr_part(
- struct symbol **symbol_1_PP,
- struct symbol *symbol_2_P)
- {
- segT return_value;
-
- /* The symbols can't be N_ABS as they are in expressions and whould just have
- their value copied into the X_add_number part. */
- know( (*symbol_1_PP) == NULL ||
- ((*symbol_1_PP)->sy_type & N_TYPE) == N_SECT ||
- ((*symbol_1_PP)->sy_type & N_TYPE) == N_UNDF);
-
- know( symbol_2_P == NULL ||
- (symbol_2_P->sy_type & N_TYPE) == N_SECT ||
- (symbol_2_P->sy_type & N_TYPE) == N_UNDF);
-
- /* check to see if there is a symbol1 */
- if(*symbol_1_PP != NULL){
- /* there is a symbol1 */
-
- /* check to see if symbol1 is undefined */
- if(((*symbol_1_PP)->sy_type & N_TYPE) == N_UNDF){
- /* symbol1 is undefined */
-
- /* check to see if there is a symbol2 */
- if(symbol_2_P != NULL){
- /* symbol1 is undefined and there is a symbol2 */
- *symbol_1_PP = NULL;
- return_value = -1;
- }
- else{
- /* symbol1 is undefined and there is no symbol2 */
- return_value = SEG_UNKNOWN;
- }
- }
- else{
- /* there is a defined symbol1 */
-
- /* check to see if there is a symbol2 */
- if(symbol_2_P != NULL){
- /* there is a symbol2 */
-
- /* check to see if symbol2 is undefined */
- if((symbol_2_P->sy_type & N_TYPE) == N_UNDF){
- /* symbol2 is undefined and symbol1 is defined */
- *symbol_1_PP = NULL;
- return_value = -1;
- }
- else{
- /* symbol1 is defined and symbol2 is defined */
- /* + {symbol1} + {symbol2} or */
- /* - {symbol1} - {symbol2} */
- as_warn("Expression too complex, 2 symbols forgotten: "
- "\"%s\" \"%s\"", (*symbol_1_PP)->sy_name,
- symbol_2_P->sy_name);
- *symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
- }
- }
- else{
- /* symbol1 is defined and there is no symbol2 */
- return_value = N_TYPE_seg[(*symbol_1_PP)->sy_type & N_TYPE];
- }
- }
- }
- else{
- /* there is no symbol1 */
-
- /* check to see if there is a symbol2 */
- if(symbol_2_P != NULL){
- /* symbol2 is defined and there is no symbol1 */
- *symbol_1_PP = symbol_2_P;
- return_value = N_TYPE_seg[(symbol_2_P)->sy_type & N_TYPE];
- }
- else{
- /* there is no symbol1 or symbol2 */
- /* ??? why not SEG_UNKNOWN or SEG_NONE */
- return_value = SEG_ABSOLUTE;
- }
- }
-
- know(return_value == SEG_ABSOLUTE ||
- return_value == SEG_SECT ||
- return_value == SEG_UNKNOWN ||
- return_value == -1);
- know((*symbol_1_PP) == NULL ||
- ((*symbol_1_PP)->sy_type & N_TYPE) ==
- seg_N_TYPE[(int)return_value]);
-
- return(return_value);
- }
-
- /*
- * DJA -- Here we make a last ditch effort to turn expressions into
- * absolutes. This is particularly useful for doing arithemtic
- * on already declared labels, for example in going through the
- * following table the moveq can really be evaluated.
- *
- * start: .word 1
- * .word 2
- * .word 3
- * end:
- * lea start,a0
- * moveq #((end-start) / 2) + 1,d0
- * loop: cmpw d1,a0@+
- * dbra d0,loop
- */
- segT /* Return expressionP->X_seg. */
- try_to_make_absolute(
- expressionS *expressionP) /* Deliver result here. */
- {
- symbolS *add_symbol;
- symbolS *subtract_symbol;
-
- if(expressionP->X_seg == SEG_DIFFSECT){
-
- add_symbol = expressionP->X_add_symbol;
- if(add_symbol == NULL)
- goto giveup;
- if((add_symbol->sy_type & N_TYPE) != N_SECT)
- goto giveup;
-
- subtract_symbol = expressionP->X_subtract_symbol;
- if(subtract_symbol == NULL)
- goto giveup;
- if((subtract_symbol->sy_type & N_TYPE) != N_SECT)
- goto giveup;
-
- if(add_symbol->sy_frag == subtract_symbol->sy_frag){
- if(add_symbol->sy_frag != NULL &&
- expressionP->X_add_number +
- (int)add_symbol->sy_value -
- (int)subtract_symbol->sy_value >= 0){
- expressionP->X_add_number += add_symbol->sy_value -
- subtract_symbol->sy_value;
- expressionP->X_seg = SEG_ABSOLUTE;
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
-
- }
- }
- else{
- /*
- * This logic works only if the chain of frags can't later be
- * separated by scattered loading. To make sure that this can't
- * happen we would have to make sure all symbols associated with
- * frags in the chain are of the Lx form and the -L flag is not
- * see so they will not appear in the output (if they are not in
- * the output then the link editor can't separate the chain of
- * frags by scattered loading). Since this code does not make
- * sure of this it is broken. But this is a known bug in the
- * NeXT 3.2 and earilier releases so this code is if'ed
- * !flagseen['k'] which will make it compatable with 3.2 and
- * previous releases.
- */
- if(!flagseen['k']){
- /*
- * Try to see if the chain of frags between the subtract
- * symbol and the add symbol is made up of only rs_fill and
- * rs_align frags and then calculate the difference. This
- * will always work on RISC machines since they won't have
- * any machine dependent frags of variable length in the
- * chain.
- */
- unsigned long size, fail;
- struct frag *frag;
-
- if(add_symbol->sy_frag != NULL &&
- subtract_symbol->sy_frag != NULL){
- fail = 0;
- size = 0;
- frag = subtract_symbol->sy_frag;
- while(!fail && frag != NULL &&
- frag != add_symbol->sy_frag){
- if(frag->fr_type == rs_align)
- size = round(size + frag->fr_fix,
- 1 << frag->fr_offset);
- else if(frag->fr_type == rs_fill)
- size += frag->fr_fix +
- frag->fr_var * frag->fr_offset;
- else
- fail = 1;
- frag = frag->fr_next;
- }
-
- if(!fail && frag == add_symbol->sy_frag){
- expressionP->X_add_number = size +
- add_symbol->sy_value -
- subtract_symbol->sy_value;
- expressionP->X_seg = SEG_ABSOLUTE;
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- }
- }
- }
- }
- }
- giveup:
-
- return(expressionP->X_seg);
- }
-
- /*
- * two_char_op_encoding() return the operator type for two character operators.
- * The first_op_char is part of a two character operator and this routine is
- * then used to determine the operator type looking at the second character.
- */
- static
- operatorT
- two_char_op_encoding(
- char first_op_char)
- {
- char second_op_char;
-
- second_op_char = input_line_pointer[1];
- switch(first_op_char){
- case '<':
- if(second_op_char == '<')
- return(O_left_shift);
- if(second_op_char == '=')
- return(O_less_than_or_equal);
- if(second_op_char == '>')
- return(O_not_equal);
- return(O_less_than);
- case '>':
- if(second_op_char == '>')
- return(O_right_shift);
- if(second_op_char == '=')
- return(O_greater_than_or_equal);
- return(O_greater_than);
- case '=':
- if(second_op_char == '=')
- return(O_equal);
- return(O_illegal);
- case '!':
- if(second_op_char == '=')
- return(O_not_equal);
- return O_not_equal;
- default:
- BAD_CASE(first_op_char);
- return O_illegal;
- }
- }
-
- /*
- * get_symbol_end()
- *
- * This lives here because it belongs equally in expr.c & read.c.
- * Expr.c is just a branch office read.c anyway, and putting it
- * here lessens the crowd at read.c.
- *
- * Assume input_line_pointer is at start of symbol name.
- * Advance input_line_pointer past symbol name.
- * Turn that character into a '\0', returning its former value.
- * This allows a string compare (RMS wants symbol names to be strings)
- * of the symbol name.
- * There will always be a char following symbol name, because all good
- * lines end in end-of-line.
- */
- char
- get_symbol_end(
- void)
- {
- register char c;
-
- /*
- * Symbol names are allowed to have surrounding ""s so that names can
- * have any characters in them (including spacesi, colons, etc). This
- * is done so names like "[Foo bar:fuz:]" can be used as symbol names.
- */
- if(*input_line_pointer == '"'){
- input_line_pointer++;
- do{
- c = *input_line_pointer++ ;
- }while(c != '"' && c != '\0' && c != '\n');
- if(c == '"'){
- *(input_line_pointer - 1) = 0;
- c = *input_line_pointer++;
- }
- }
- else{
- while(is_part_of_name(c = *input_line_pointer++))
- ;
- }
- *--input_line_pointer = 0;
- return(c);
- }
-