home *** CD-ROM | disk | FTP | other *** search
- # some functions to extend icalc
- # MWS, March 24, 1991.
-
- silent # switch off confirmation of definitions
-
- func log(z) = ln(z)/LOG10 # base-10 logarithm
- func lg(z) = ln(z)/LOG2 # base-2 logarithm
-
- #minor trig functions
- func csc(z) = 1/sin(z)
- func sec(z) = 1/cos(z)
- func cot(z) = cos(z)/sin(z)
-
- #inverse minor trig functions
- func acsc(z) = -i*ln((i+sqrt(sqr(z)-1))/z)
- func asec(z) = -i*ln((1+sqrt(1-sqr(z)))/z)
- func acot(z) = -0.5*i*ln((z+i)/(z-i))
-
- #inverse hyperbolic trig functions
- func asinh(z) = ln(z+sqrt(sqr(z)+1))
- func acosh(z) = ln(z+sqrt(sqr(z)-1))
- func atanh(z) = 0.5*ln((1+z)/(1-z))
-
- #minor hyperbolic trig functions
- func csch(z) = 1/sinh(z)
- func sech(z) = 1/cosh(z)
- func coth(z) = cosh(z)/sinh(z)
-
- #inverse minor hyperbolic trig functions
- func acsch(z) = ln((1+sqrt(1+sqr(z)))/z)
- func asech(z) = ln((1+sqrt(1-sqr(z)))/z)
- func acoth(z) = 0.5*ln((z+1)/(z-1))
-
- #Stirling's formula
- func stirl(n) = sqrt(2*n*PI)*(n/E)^n*(1+1/(12*n))
-
- verbose # restore display of results, messages
-