home *** CD-ROM | disk | FTP | other *** search
- /*
- ** Astrolog (Version 4.00) File: xoptions.c
- **
- ** IMPORTANT NOTICE: the graphics database and chart display routines
- ** used in this program are Copyright (C) 1991-1993 by Walter D. Pullen
- ** (cruiser1@stein.u.washington.edu). Permission is granted to freely
- ** use and distribute these routines provided one doesn't sell,
- ** restrict, or profit from them in any way. Modification is allowed
- ** provided these notices remain with any altered or edited versions of
- ** the program.
- **
- ** The main planetary calculation routines used in this program have
- ** been Copyrighted and the core of this program is basically a
- ** conversion to C of the routines created by James Neely as listed in
- ** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
- ** available from Matrix Software. The copyright gives us permission to
- ** use the routines for personal use but not to sell them or profit from
- ** them in any way.
- **
- ** The PostScript code within the core graphics routines are programmed
- ** and Copyright (C) 1992-1993 by Brian D. Willoughby
- ** (brianw@sounds.wa.com). Conditions are identical to those above.
- **
- ** The extended accurate ephemeris databases and formulas are from the
- ** calculation routines in the program "Placalc" and are programmed and
- ** Copyright (C) 1989,1991,1993 by Astrodienst AG and Alois Treindl
- ** (alois@azur.ch). The use of that source code is subject to
- ** regulations made by Astrodienst Zurich, and the code is not in the
- ** public domain. This copyright notice must not be changed or removed
- ** by any user of this program.
- **
- ** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
- ** X Window graphics initially programmed 10/23-29/1991.
- ** PostScript graphics initially programmed 11/29-30/1992.
- ** Last code change made 12/31/1993.
- */
-
- #include "astrolog.h"
-
- #ifdef GRAPH
-
- /*
- ******************************************************************************
- ** Chart Graphics Subroutines.
- ******************************************************************************
- */
-
- /* Return whether the specified object should be displayed in the current */
- /* graphics chart type. For example, don't include the Moon in the solar */
- /* system charts, don't include house cusps in astro-graph, and so on. */
-
- int Proper(i)
- int i;
- {
- int j;
-
- if (modex == MODEL || modex == MODEE) /* astro-graph or ephem charts */
- j = IsThing(i);
- else if (modex == MODEZ || modex == MODEG) /* horizon or zenith charts */
- j = IsObject(i);
- else if (modex == MODES) /* solar system charts */
- j = (i != _MOO && IsObject(i));
- else
- j = TRUE;
- return j && !ignore[i]; /* check restriction status */
- }
-
-
- /* Set up arrays with the sine and cosine values of each degree. This is */
- /* used by the wheel chart routines which draw lots of circles. Memory is */
- /* allocated for this array if not already done. The allocation and */
- /* initialization is only done once, the first time the routine is called. */
-
- bool InitCircle()
- {
- char string[STRING];
- int i;
-
- if (circ != NULL)
- return TRUE;
- Allocate(circ, sizeof(circlestruct), circlestruct PTR);
- if (circ == NULL
- #ifdef PC
- /* For PC's the array better not cross a segment boundary. */
- || HIWORD(LOWORD(circ) + sizeof(circlestruct)) > 0
- #endif
- ) {
- sprintf(string, "Not enough memory for sine table (%d bytes).",
- sizeof(circlestruct));
- PrintError(string);
- return FALSE;
- }
- for (i = 0; i < DEGR; i++) {
- circ->x[i] = COSD((real) i);
- circ->y[i] = SIND((real) i);
- }
- circ->x[DEGR] = circ->x[0]; circ->y[DEGR] = circ->y[0];
- return TRUE;
- }
-
-
- /* Adjust an array of zodiac positions so that no two positions are within */
- /* a certain orb of each other. This is used by the wheel drawing chart */
- /* routines in order to make sure that we don't draw any planet glyphs on */
- /* top of each other. We'll later draw the glyphs at the adjusted positions. */
-
- void FillSymbolRing(symbol)
- real *symbol;
- {
- real orb = DEFORB*256.0/(real)charty*(real)SCALE, k1, k2, temp;
- int i, j, k = 1, l;
-
- /* Keep adjusting as long as we can still make changes, or until we do 'n' */
- /* rounds. (With many objects, there just may not be enough room for all.) */
-
- for (l = 0; k && l < divisions*2; l++) {
- k = 0;
- for (i = 1; i <= total; i++) if (Proper(i)) {
-
- /* For each object, determine who is closest on either side. */
-
- k1 = LARGE; k2 = -LARGE;
- for (j = 1; j <= total; j++)
- if (Proper(j) && i != j) {
- temp = symbol[j]-symbol[i];
- if (dabs(temp) > DEGHALF)
- temp -= DEGREES*Sgn(temp);
- if (temp < k1 && temp >= 0.0)
- k1 = temp;
- else if (temp > k2 && temp <= 0.0)
- k2 = temp;
- }
-
- /* If an object's too close on one side, then we move to the other. */
-
- if (k2 > -orb && k1 > orb) {
- k = 1; symbol[i] = Mod(symbol[i]+orb*0.51+k2*0.49);
- } else if (k1 < orb && k2 < -orb) {
- k = 1; symbol[i] = Mod(symbol[i]-orb*0.51+k1*0.49);
-
- /* If we are bracketed by close objects on both sides, then let's move */
- /* to the midpoint, so we are as far away as possible from either one. */
-
- } else if (k2 > -orb && k1 < orb) {
- k = 1; symbol[i] = Mod(symbol[i]+(k1+k2)*0.5);
- }
- }
- }
- }
-
-
- /* Adjust an array of longitude positions so that no two are within a */
- /* certain orb of each other. This is used by the astro-graph routine to */
- /* make sure we don't draw any planet glyphs marking the lines on top of */
- /* each other. This is almost identical to the FillSymbolRing() routine */
- /* used by the wheel charts; however, there the glyphs are placed in a */
- /* continuous ring, while here we have the left and right screen edges. */
- /* Also, here we are placing two sets of planets at the same time. */
-
- void FillSymbolLine(symbol)
- real *symbol;
- {
- real orb = DEFORB*1.35*(real)SCALE, max = DEGREES, k1, k2, temp;
- int i, j, k = 1, l;
-
- if (modex != MODEE)
- max *= (real)SCALE;
- else
- orb *= DEGREES/(real)chartx;
-
- /* Keep adjusting as long as we can still make changes. */
-
- for (l = 0; k && l < divisions*2; l++) {
- k = 0;
- for (i = 1; i <= total*2; i++)
- if (Proper((i+1)/2) && symbol[i] >= 0.0) {
-
- /* For each object, determine who is closest to the left and right. */
-
- k1 = max-symbol[i]; k2 = -symbol[i];
- for (j = 1; j <= total*2; j++) {
- if (Proper((j+1)/2) && i != j) {
- temp = symbol[j]-symbol[i];
- if (temp < k1 && temp >= 0.0)
- k1 = temp;
- else if (temp > k2 && temp <= 0.0)
- k2 = temp;
- }
- }
-
- /* If an object's too close on one side, then we move to the other. */
-
- if (k2 > -orb && k1 > orb) {
- k = 1; symbol[i] = symbol[i]+orb*0.51+k2*0.49;
- } else if (k1 < orb && k2 < -orb) {
- k = 1; symbol[i] = symbol[i]-orb*0.51+k1*0.49;
- } else if (k2 > -orb && k1 < orb) {
- k = 1; symbol[i] = symbol[i]+(k1+k2)*0.5;
- }
- }
- }
- }
-
-
- /* Another stream reader, this one is used by the globe drawing routine: */
- /* for the next body of land/water, return its name (and color), its */
- /* longitude and latitude, and a vector description of its outline. */
-
- int ReadWorldData(nam, loc, lin)
- char **nam, **loc, **lin;
- {
- static char FAR **datapointer = worlddata;
-
- *loc = *datapointer++;
- *lin = *datapointer++;
- *nam = *datapointer++;
- if (*loc[0]) {
- if ((exdisplay & DASHXP0) && xfile)
- fprintf(stdout, "%s\n", *nam+1);
- return TRUE;
- }
- datapointer = worlddata; /* Reset stream when no data left. */
- return FALSE;
- }
-
-
- /* Given longitude and latitude values on a globe, return the window */
- /* coordinates corresponding to them. In other words, project the globe */
- /* onto the view plane, and return where our coordinates got projected to, */
- /* as well as whether our location is hidden on the back side of the globe. */
-
- int GlobeCalc(x1, y1, u, v, cx, cy, rx, ry, deg)
- real x1, y1;
- int *u, *v, cx, cy, rx, ry, deg;
- {
- real j, siny1;
-
- /* Compute coordinates for a general globe invoked with -XG switch. */
-
- if (modex == MODEG) {
- x1 = Mod(x1+(real)deg); /* Shift by current globe rotation value. */
- if (tilt != 0.0) {
- x1 = DTOR(x1); y1 = DTOR(DEGQUAD-y1); /* Do another coordinate */
- CoorXform(&x1, &y1, tilt / DEGRAD); /* shift if the globe's */
- x1 = Mod(RTOD(x1)); y1 = DEGQUAD-RTOD(y1); /* equator is tilted any. */
- }
- *v = cy + (int) ((real)ry*-COSD(y1)-ROUND);
- *u = cx + (int) ((real)rx*-COSD(x1)*SIND(y1)-ROUND);
- return x1 > DEGHALF;
- }
-
- /* Compute coordinates for a polar globe invoked with -XP switch. */
-
- siny1 = SIND(y1);
- j = xbonus ? DEGQUAD+x1+deg : 270.0-x1-deg;
- *v = cy + (int) (siny1*(real)ry*SIND(j)-ROUND);
- *u = cx + (int) (siny1*(real)rx*COSD(j)-ROUND);
- return xbonus ? y1 < DEGQUAD : y1 > DEGQUAD;
- }
-
-
- /* Draw a globe in the window, based on the specified rotational and tilt */
- /* values. In addition, we may draw in each planet at its zenith position. */
-
- void DrawGlobe(deg)
- int deg;
- {
- char *nam, *loc, *lin, d;
- int X[TOTAL+1], Y[TOTAL+1], M[TOTAL+1], N[TOTAL+1],
- cx = chartx/2, cy = charty/2, rx, ry, lon, lat, unit = 12*SCALE,
- x, y, m, n, u, v, i, J, k, l, o;
- real planet1[TOTAL+1], planet2[TOTAL+1], x1, y1, j;
- colpal c;
-
- rx = cx-1; ry = cy-1;
-
- /* Loop through each coastline string, drawing visible parts on the globe. */
-
- while (ReadWorldData(&nam, &loc, &lin)) {
- i = nam[0]-'0';
- c = (modex == MODEG && xbonus) ? gray :
- (i ? rainbowcolor[i] : maincolor[6]);
- DrawColor(c);
-
- /* Get starting longitude and latitude of current coastline piece. */
-
- lon = (loc[0] == '+' ? 1 : -1)*
- ((loc[1]-'0')*100 + (loc[2]-'0')*10 + (loc[3]-'0'));
- lat = (loc[4] == '+' ? 1 : -1)*((loc[5]-'0')*10 + (loc[6]-'0'));
- x = 180-lon;
- y = 90-lat;
- GlobeCalc((real) x, (real) y, &m, &n, cx, cy, rx, ry, deg);
-
- /* Go down the coastline piece, drawing each visible segment on globe. */
-
- o = (tilt == 0.0 && modex != MODEP);
- k = l = TRUE;
- while (d = *lin++) {
- if (d == 'L' || d == 'H' || d == 'G')
- x--;
- else if (d == 'R' || d == 'E' || d == 'F')
- x++;
- if (d == 'U' || d == 'H' || d == 'E')
- y--;
- else if (d == 'D' || d == 'G' || d == 'F')
- y++;
- if (x > 359)
- x = 0;
- else if (x < 0)
- x = 359;
- if (o) {
- k = x+deg;
- if (k > 359)
- k -= DEGR;
- k = (k <= 180);
- }
- if (k && !GlobeCalc((real) x, (real) y, &u, &v, cx, cy, rx, ry, deg)) {
- if (l)
- DrawLine(m, n, u, v);
- m = u; n = v;
- l = TRUE;
- } else
- l = FALSE;
- }
- }
-
- DrawColor(on);
- DrawEllipse(0, 0, chartx-1, charty-1);
-
- /* Now, only if we are in bonus chart mode, draw each planet at its */
- /* zenith location on the globe, assuming that location is visible. */
-
- if (modex != MODEG || !xbonus)
- return;
- j = Lon;
- if (j < 0.0)
- j += DEGREES;
- for (i = 1; i <= total; i++) {
- planet1[i] = DTOR(planet[i]);
- planet2[i] = DTOR(planetalt[i]);
- EclToEqu(&planet1[i], &planet2[i]); /* Calculate zenith long. & lat. */
- }
- for (i = 1; i <= total; i++) if (Proper(i)) {
- x1 = planet1[_MC]-planet1[i];
- if (x1 < 0.0)
- x1 += 2.0*PI;
- if (x1 > PI)
- x1 -= 2.0*PI;
- x1 = Mod(DEGHALF-j-RTOD(x1));
- y1 = DEGQUAD-RTOD(planet2[i]);
- X[i] = GlobeCalc(x1, y1, &u, &v, cx, cy, rx, ry, deg) ? -1000 : u;
- Y[i] = v; M[i] = X[i]; N[i] = Y[i]+unit/2;
- }
-
- /* Now that we have the coordinates of each object, figure out where to */
- /* draw the glyphs. Again, we try not to draw glyphs on top of each other. */
-
- for (i = 1; i <= total; i++) if (Proper(i)) {
- k = l = chartx+charty;
-
- /* For each planet, we draw the glyph either right over or right under */
- /* the actual zenith location point. So, find out the closest distance */
- /* of any other planet assuming we place ours at both possibilities. */
-
- for (J = 1; J < i; J++) if (Proper(J)) {
- k = MIN(k, abs(M[i]-M[J])+abs(N[i]-N[J]));
- l = MIN(l, abs(M[i]-M[J])+abs(N[i]-unit-N[J]));
- }
-
- /* Normally, we put the glyph right below the actual point. If however */
- /* another planet is close enough to have their glyphs overlap, and the */
- /* above location is better of, then we'll draw the glyph above instead. */
-
- if (k < unit || l < unit)
- if (k < l)
- N[i] -= unit;
- }
- for (i = total; i >= 1; i--) if (X[i] >= 0 && Proper(i)) /* Draw the */
- DrawObject(i, M[i], N[i]); /* glyphs. */
- for (i = total; i >= 1; i--) if (X[i] >= 0 && Proper(i)) {
- DrawColor(objectcolor[i]);
- DrawSpot(X[i], Y[i]);
- }
- }
-
-
- /* Draw one "Ley line" on the world map, based coordinates given in terms of */
- /* longitude and vertical fractional distance from the center of the earth. */
-
- void DrawLeyLine(l1, f1, l2, f2)
- real l1, f1, l2, f2;
- {
- l1 = Mod(l1); l2 = Mod(l2);
-
- /* Convert vertical fractional distance to a corresponding coordinate. */
-
- f1 = DEGQUAD-ASIN(f1)/(PI/2.0)*DEGQUAD;
- f2 = DEGQUAD-ASIN(f2)/(PI/2.0)*DEGQUAD;
- DrawWrap((int) (l1*(real)SCALE+ROUND)+1,
- (int) (f1*(real)SCALE+ROUND)+1,
- (int) (l2*(real)SCALE+ROUND)+1,
- (int) (f2*(real)SCALE+ROUND)+1, 1, chartx-2);
- }
-
-
- /* Draw the main set of planetary Ley lines on the map of the world. This */
- /* consists of drawing an icosahedron and then a dodecahedron lattice. */
-
- void DrawLeyLines(deg)
- int deg;
- {
- real off = (real)deg, phi, h, h1, h2, r, i;
-
- phi = (sqrt(5.0)+1.0)/2.0; /* Icosahedron constants. */
- h = 1.0/(phi*2.0-1.0);
- DrawColor(aspectcolor[10]);
- for (i = off; i < DEGREES+off; i += 72.0) { /* Draw icosahedron edges. */
- DrawLeyLine(i, h, i+72.0, h);
- DrawLeyLine(i-36.0, -h, i+36.0, -h);
- DrawLeyLine(i, h, i, 1.0);
- DrawLeyLine(i+36.0, -h, i+36.0, -1.0);
- DrawLeyLine(i, h, i+36.0, -h);
- DrawLeyLine(i, h, i-36.0, -h);
- }
- r = 1.0/sqrt(3.0)/phi/cos(DTOR(54.0)); /* Dodecahedron constants. */
- h2 = sqrt(1.0-r*r); h1 = h2/(phi*2.0+1.0);
- DrawColor(aspectcolor[13]);
- for (i = off; i < DEGREES+off; i += 72.0) { /* Draw docecahedron edges. */
- DrawLeyLine(i-36.0, h2, i+36.0, h2);
- DrawLeyLine(i, -h2, i+72.0, -h2);
- DrawLeyLine(i+36.0, h2, i+36.0, h1);
- DrawLeyLine(i, -h2, i, -h1);
- DrawLeyLine(i+36.0, h1, i+72.0, -h1);
- DrawLeyLine(i+36.0, h1, i, -h1);
- }
- }
-
-
- /* Draw a map of the world on the screen. This is similar to drawing the */
- /* globe, but is simplified because this is just a rectangular image, and */
- /* the window coordinates are proportional to the longitude and latitude. */
-
- void DrawWorld(deg)
- int deg;
- {
- char *nam, *loc, *lin, d;
- int lon, lat, x, y, xold, yold, i;
- colpal c;
-
- /* Loop through each coastline string, drawing it on the world map. */
-
- while (ReadWorldData(&nam, &loc, &lin)) {
- i = nam[0]-'0';
- c = modex == MODEL ? on : (i ? rainbowcolor[i] : maincolor[6]);
-
- /* Get starting longitude and latitude of current coastline piece. */
-
- lon = (loc[0] == '+' ? 1 : -1)*
- ((loc[1]-'0')*100 + (loc[2]-'0')*10 + (loc[3]-'0'));
- lat = (loc[4] == '+' ? 1 : -1)*((loc[5]-'0')*10 + (loc[6]-'0'));
- xold = x = (int) Mod((real)(181-lon+deg));
- yold = y = 91-lat;
-
- /* Go down the coastline piece, drawing each segment on world map. */
-
- for (i = 0; d = lin[i]; i++) {
- if (d == 'L' || d == 'H' || d == 'G')
- x--;
- else if (d == 'R' || d == 'E' || d == 'F')
- x++;
- if (d == 'U' || d == 'H' || d == 'E')
- y--;
- else if (d == 'D' || d == 'G' || d == 'F')
- y++;
- if (x > DEGR) {
- x = 1;
- xold = 0;
- }
-
- /* If we are doing a Mollewide map projection, then transform the */
- /* coordinates appropriately before drawing the segment. */
-
- DrawColor(c);
- if ((exdisplay & DASHXW0) > 0 && modex != MODEL)
- DrawLine((180+(xold-180)*
- (int)sqrt((real)(32400-4*(yold-91)*(yold-91)))/180)*SCALE,
- yold*SCALE,
- (180+(x-180)*(int)sqrt((real)(32400-4*(y-91)*(y-91)))/180)*SCALE,
- y*SCALE);
- else
- DrawLine(xold*SCALE, yold*SCALE, x*SCALE, y*SCALE);
- if (x < 1)
- x = DEGR;
- xold = x; yold = y;
- }
- }
-
- /* Again, if we are doing the non-rectangular Mollewide map projection, */
- /* draw the outline of the globe/map itself. */
-
- if ((exdisplay & DASHXW0) > 0 && modex != MODEL) {
- if (!xbonus) {
- DrawColor(on);
- for (xold = 0, y = -89; y <= 90; y++, xold = x)
- for (x = (int)(sqrt((real)(32400-4*y*y))+ROUND), i = -1; i < 2; i += 2)
- DrawLine((180+i*xold)*SCALE, (90+y)*SCALE,
- (180+i*x)*SCALE, (91+y)*SCALE);
- }
- }
- }
-
-
- /* Given a zodiac degree, adjust it if need be to account for the expanding */
- /* and compacting of parts the zodiac that happen when we display a graphic */
- /* wheel chart such that all the houses appear the same size. */
-
- real XHousePlaceIn(deg)
- real deg;
- {
- int in;
-
- if (modex == MODEv) /* We only adjust for the -w -X combination. */
- return deg;
- in = HousePlaceIn(deg);
- return Mod(STOZ(in)+MinDistance(house[in], deg)/
- MinDistance(house[in], house[Mod12(in+1)])*30.0);
- }
-
-
- /*
- ******************************************************************************
- ** Multiple Chart Graphics Subprograms.
- ******************************************************************************
- */
-
- /* Draw another wheel chart; however, this time we have two rings of planets */
- /* because we are doing a relationship chart between two sets of data. This */
- /* chart is obtained when the -r0 is combined with the -X switch. */
-
- void XChartWheelRelation()
- {
- real xsign[SIGNS+1], xhouse1[SIGNS+1], xplanet1[TOTAL+1], xplanet2[TOTAL+1],
- symbol[TOTAL+1];
- int cx, cy, i, j;
- real asc, unitx, unity, px, py, temp;
-
- /* Set up variables and temporarily automatically decrease the horizontal */
- /* chart size to leave room for the sidebar if that mode is in effect. */
-
- if (xtext && !(exdisplay & DASHv0))
- chartx -= SIDET;
- cx = chartx/2 - 1; cy = charty/2 - 1;
- unitx = (real)cx; unity = (real)cy;
- asc = xeast ? planet1[abs(xeast)]+90*(xeast < 0) : house1[1];
- InitCircle();
-
- /* Fill out arrays with the degree of each object, cusp, and sign glyph. */
-
- if (modex == MODEv) {
- for (i = 1; i <= SIGNS; i++)
- xhouse1[i] = PZ(house1[i]);
- } else {
- asc -= house1[1];
- for (i = 1; i <= SIGNS; i++)
- xhouse1[i] = PZ(STOZ(i));
- }
- for (i = 1; i <= SIGNS; i++)
- xsign[i] = PZ(XHousePlaceIn(STOZ(i)));
- for (i = 1; i <= total; i++)
- xplanet1[i] = PZ(XHousePlaceIn(planet1[i]));
- for (i = 1; i <= total; i++)
- xplanet2[i] = PZ(XHousePlaceIn(planet2[i]));
-
- /* Draw the horizon and meridian lines across whole chart, and draw the */
- /* zodiac and house rings, exactly like before. We are drawing only the */
- /* houses of one of the two charts in the relationship, however. */
-
- DrawColor(hilite);
- DrawDash(cx+POINT(unitx, 0.99, PX(xhouse1[1])),
- cy+POINT(unity, 0.99, PY(xhouse1[1])),
- cx+POINT(unitx, 0.99, PX(xhouse1[7])),
- cy+POINT(unity, 0.99, PY(xhouse1[7])), !xcolor);
- DrawDash(cx+POINT(unitx, 0.99, PX(xhouse1[10])),
- cy+POINT(unity, 0.99, PY(xhouse1[10])),
- cx+POINT(unitx, 0.99, PX(xhouse1[4])),
- cy+POINT(unity, 0.99, PY(xhouse1[4])), !xcolor);
- for (i = 0; i < DEGR; i += 5-(xcolor || psfile || metafile)*4) {
- temp = PZ(XHousePlaceIn((real)i));
- px = PX(temp); py = PY(temp);
- DrawColor(i%5 ? gray : on);
- DrawDash(cx+POINT(unitx, 0.78, px), cy+POINT(unity, 0.78, py),
- cx+POINT(unitx, 0.82, px), cy+POINT(unity, 0.82, py),
- ((psfile || metafile) && i%5)*2);
- }
-
- DrawColor(on);
- DrawCircle(cx, cy, (int)(unitx*0.95+ROUND), (int)(unity*0.95+ROUND));
- DrawCircle(cx, cy, (int)(unitx*0.82+ROUND), (int)(unity*0.82+ROUND));
- DrawCircle(cx, cy, (int)(unitx*0.78+ROUND), (int)(unity*0.78+ROUND));
- DrawCircle(cx, cy, (int)(unitx*0.70+ROUND), (int)(unity*0.70+ROUND));
-
- for (i = 1; i <= SIGNS; i++) {
- temp = xsign[i];
- DrawColor(on);
- DrawLine(cx+POINT(unitx, 0.95, PX(temp)),
- cy+POINT(unity, 0.95, PY(temp)),
- cx+POINT(unitx, 0.82, PX(temp)),
- cy+POINT(unity, 0.82, PY(temp)));
- DrawLine(cx+POINT(unitx, 0.78, PX(xhouse1[i])),
- cy+POINT(unity, 0.78, PY(xhouse1[i])),
- cx+POINT(unitx, 0.70, PX(xhouse1[i])),
- cy+POINT(unity, 0.70, PY(xhouse1[i])));
- if (xcolor && i%3 != 1) {
- DrawColor(gray);
- DrawDash(cx, cy, cx+POINT(unitx, 0.70, PX(xhouse1[i])),
- cy+POINT(unity, 0.70, PY(xhouse1[i])), 1);
- }
- temp = Midpoint(temp, xsign[Mod12(i+1)]);
- DrawColor(signcolor(i));
- DrawSign(i, cx+POINT(unitx, 0.885, PX(temp)),
- cy+POINT(unity, 0.885, PY(temp)));
- temp = Midpoint(xhouse1[i], xhouse1[Mod12(i+1)]);
- DrawHouse(i, cx+POINT(unitx, 0.74, PX(temp)),
- cy+POINT(unity, 0.74, PY(temp)));
- }
-
- /* Draw the outer ring of planets (based on the planets in the chart */
- /* which the houses do not reflect - the houses belong to the inner ring */
- /* below). Draw each glyph, a line from it to its actual position point */
- /* in the outer ring, and then draw another line from this point to a */
- /* another dot at the same position in the inner ring as well. */
-
- for (i = 1; i <= total; i++)
- symbol[i] = xplanet2[i];
- FillSymbolRing(symbol);
- for (i = 1; i <= total; i++) if (Proper(i)) {
- if (xlabel) {
- temp = symbol[i];
- DrawColor(ret2[i] < 0.0 ? gray : on);
- DrawDash(cx+POINT(unitx, 0.58, PX(xplanet2[i])),
- cy+POINT(unity, 0.58, PY(xplanet2[i])),
- cx+POINT(unitx, 0.61, PX(temp)),
- cy+POINT(unity, 0.61, PY(temp)),
- (ret2[i] < 0.0 ? 1 : 0) - xcolor);
- DrawObject(i, cx+POINT(unitx, 0.65, PX(temp)),
- cy+POINT(unity, 0.65, PY(temp)));
- }
- DrawColor(objectcolor[i]);
- DrawPoint(cx+POINT(unitx, 0.56, PX(xplanet2[i])),
- cy+POINT(unity, 0.56, PY(xplanet2[i])));
- DrawPoint(cx+POINT(unitx, 0.43, PX(xplanet2[i])),
- cy+POINT(unity, 0.43, PY(xplanet2[i])));
- DrawColor(ret2[i] < 0.0 ? gray : on);
- DrawDash(cx+POINT(unitx, 0.45, PX(xplanet2[i])),
- cy+POINT(unity, 0.45, PY(xplanet2[i])),
- cx+POINT(unitx, 0.54, PX(xplanet2[i])),
- cy+POINT(unity, 0.54, PY(xplanet2[i])), 2-xcolor);
- }
-
- /* Now draw the inner ring of planets. If it weren't for the outer ring, */
- /* this would be just like the standard non-relationship wheel chart with */
- /* only one set of planets. Again, draw glyph, and a line to true point. */
-
- for (i = 1; i <= total; i++) {
- symbol[i] = xplanet1[i];
- }
- FillSymbolRing(symbol);
- for (i = 1; i <= total; i++) if (Proper(i)) {
- if (xlabel) {
- temp = symbol[i];
- DrawColor(ret1[i] < 0.0 ? gray : on);
- DrawDash(cx+POINT(unitx, 0.45, PX(xplanet1[i])),
- cy+POINT(unity, 0.45, PY(xplanet1[i])),
- cx+POINT(unitx, 0.48, PX(temp)),
- cy+POINT(unity, 0.48, PY(temp)),
- (ret1[i] < 0.0 ? 1 : 0) - xcolor);
- DrawObject(i, cx+POINT(unitx, 0.52, PX(temp)),
- cy+POINT(unity, 0.52, PY(temp)));
- } else
- DrawColor(objectcolor[i]);
- DrawPoint(cx+POINT(unitx, 0.43, PX(xplanet1[i])),
- cy+POINT(unity, 0.43, PY(xplanet1[i])));
- }
-
- /* Draw lines connecting planets between the two charts that have aspects. */
-
- if (!xbonus) { /* Don't draw aspects in bonus mode. */
- CreateGridRelation(FALSE);
- for (j = total; j >= 1; j--)
- for (i = total; i >= 1; i--)
- if (grid->n[i][j] && Proper(i) && Proper(j)) {
- DrawColor(aspectcolor[grid->n[i][j]]);
- DrawDash(cx+POINT(unitx, 0.41, PX(xplanet1[j])),
- cy+POINT(unity, 0.41, PY(xplanet1[j])),
- cx+POINT(unitx, 0.41, PX(xplanet2[i])),
- cy+POINT(unity, 0.41, PY(xplanet2[i])),
- abs(grid->v[i][j]/60/2));
- }
- }
-
- /* Go draw sidebar with chart information and positions if need be. */
-
- DrawInfo();
- }
-
-
- /* Draw an aspect (or midpoint) grid in the window, between the planets in */
- /* two different charts, with the planets labeled at the top and side. This */
- /* chart is done when the -g switch is combined with the -r0 and -X switch. */
- /* Like above, the chart always has a (definable) fixed number of cells. */
-
- void XChartGridRelation()
- {
- char string[STRING];
- int unit, siz, x, y, i, j, k, l;
- colpal c;
-
- unit = CELLSIZE*SCALE; siz = (gridobjects+1)*unit;
- CreateGridRelation(xbonus != (exdisplay & DASHg0) > 0);
- for (y = 0, j = -1; y <= gridobjects; y++) {
- do {
- j++;
- } while (ignore[j] && j <= total);
- DrawColor(gray);
- DrawDash(0, (y+1)*unit, siz, (y+1)*unit, !xcolor);
- DrawDash((y+1)*unit, 0, (y+1)*unit, siz, !xcolor);
- DrawColor(hilite);
- DrawEdge(0, y*unit, unit, (y+1)*unit);
- DrawEdge(y*unit, 0, (y+1)*unit, unit);
- if (j <= total) for (x = 0, i = -1; x <= gridobjects; x++) {
- do {
- i++;
- } while (ignore[i] && i <= total);
-
- /* Again, we are looping through each cell in each row and column. */
-
- if (i <= total) {
- turtlex = x*unit+unit/2;
- turtley = y*unit+unit/2 - (SCALE/scalet > 2 ? 5*scalet : 0);
-
- /* If current cell is on top row or left hand column, draw glyph */
- /* of planet owning the particular row or column in question. */
-
- if (y == 0 || x == 0) {
- if (x+y > 0)
- DrawObject(j == 0 ? i : j, turtlex, turtley);
- } else {
-
- /* Otherwise, draw glyph of aspect in effect, or glyph of */
- /* sign of midpoint, between the two planets in question. */
-
- if (xbonus == (exdisplay & DASHg0) > 0) {
- DrawColor(c = aspectcolor[grid->n[i][j]]);
- DrawAspect(grid->n[i][j], turtlex, turtley);
- } else {
- DrawColor(c = signcolor(grid->n[i][j]));
- DrawSign(grid->n[i][j], turtlex, turtley);
- }
- }
-
- /* Again, when scale size is 300, print some text in current cell: */
-
- if (SCALE/scalet > 2 && xlabel) {
-
- /* For top and left edges, print sign and degree of the planet. */
-
- if (y == 0 || x == 0) {
- if (x+y > 0) {
- k = ZTOS(y == 0 ? planet2[i] : planet1[j]);
- l = (int)((y == 0 ? planet2[i] : planet1[j])-STOZ(k));
- c = signcolor(k);
- sprintf(string, "%c%c%c %02d", SIGNAM(k), l);
-
- /* For extreme upper left corner, print some little arrows */
- /* pointing out chart1's planets and chart2's planets. */
-
- } else {
- c = hilite;
- sprintf(string, "1v 2->");
- }
- } else {
- k = abs(grid->v[i][j]);
-
- /* For aspect cells, print the orb in degrees and minutes. */
-
- if (xbonus == (exdisplay & DASHg0) > 0)
- if (grid->n[i][j])
- sprintf(string, "%c%d %02d'", k != grid->v[i][j] ? (exdisplay &
- DASHga ? 'a' : '-') : (exdisplay & DASHga ? 's' : '+'),
- k/60, k%60);
- else
- sprintf(string, "");
-
- /* For midpoint cells, print degree and minute. */
-
- else
- sprintf(string, "%2d %02d'", k/60, k%60);
- }
- DrawColor(c);
- DrawText(string, x*unit+unit/2, (y+1)*unit-3*scalet, TRUE);
- }
- }
- }
- }
- }
-
-
- #ifdef BIORHYTHM
- #define BIODAYS 14 /* Number of days to include in each half of chart. */
-
- /* Draw a graphic biorhythm chart on the screen, as is done when the -rb */
- /* switch is combined with -X. This is technically a relationship chart in */
- /* that biorhythm status is determined by a natal chart time at another */
- /* later time. For the day in question, and for two weeks before and after, */
- /* the Physical, Emotional, and Mental percentages are plotted. */
-
- void XChartBiorhythm()
- {
- char string[6], *c;
- real jd, r, a;
- int x1, x2, xs, cx, y1, y2, ys, cy, i, j, k, x, y, x0, y0;
-
- k = FONTX*6*scalet;
- x1 = k; x2 = chartx-k; xs = x2-x1; cx = (x1+x2)/2;
- k = CELLSIZE;
- y1 = k; y2 = charty-k; ys = y2-y1; cy = (y1+y2)/2;
-
- /* Create a dotted day/percentage grid to graph on. */
- DrawColor(gray);
- DrawDash(x1, cy, x2, cy, 1);
- DrawDash(cx, y1, cx, y2, 1);
- for (j = -BIODAYS+1; j <= BIODAYS-1; j++) {
- x = x1 + MULTDIV(xs, j+BIODAYS, BIODAYS*2);
- for (k = -90; k <= 90; k += 10) {
- y = y1 + MULTDIV(ys, 100+k, 200);
- DrawPoint(x, y);
- }
- }
-
- /* Now actually draw the three biorhythm curves. */
- for (i = 1; i <= 3; i++) {
- jd = floor(JD + ROUND);
- switch (i) {
- case 1: r = _PHY; c = "PHYS"; DrawColor(elemcolor[_FIR]); break;
- case 2: r = _EMO; c = "EMOT"; DrawColor(elemcolor[_WAT]); break;
- case 3: r = _INT; c = "INTE"; DrawColor(elemcolor[_EAR]); break;
- }
- for (jd -= (real)BIODAYS, j = -BIODAYS; j <= BIODAYS; j++, jd += 1.0) {
- a = Biorhythm(jd, r);
- x = x1 + MULTDIV(xs, j+BIODAYS, BIODAYS*2);
- y = y1 + (int)((real)ys * (100.0-a) / 200.0);
- if (j > -BIODAYS)
- DrawLine(x0, y0, x, y);
- else
- DrawText(c, x1/2, y+2*scalet, FALSE);
- x0 = x; y0 = y;
- }
- }
-
- DrawColor(hilite);
- /* Label biorhythm percentages along right vertical axis. */
- for (k = -100; k <= 100; k += 10) {
- sprintf(string, "%c%3d%%", k < 0 ? '-' : '+', abs(k));
- y = y1 + MULTDIV(ys, 100-k, 200);
- DrawText(string, (x2+chartx)/2, y+2*scalet, FALSE);
- }
- /* Label days on top horizontal axis. */
- for (j = -BIODAYS; j <= BIODAYS; j += 2) {
- x = x1 + MULTDIV(xs, j+BIODAYS, BIODAYS*2);
- sprintf(string, "%c%d", j < 0 ? '-' : '+', abs(j));
- DrawText(string, x, y1-2*scalet, TRUE);
- }
- DrawEdge(x1, y1, x2, y2);
- }
- #endif
-
-
- /* Create a chart in the window based on the current graphics chart mode. */
- /* This is the main dispatch routine for all of the program's graphics. */
-
- void XChart()
- {
- char string[STRING];
- int i, j, k;
-
- scalet = psfile ? PSMUL : (metafile ? METAMUL : 1);
-
- DrawClearScreen();
- switch (modex) {
- case MODEv:
- case MODEw:
- if (relation > DASHr0)
- XChartWheel();
- else
- XChartWheelRelation();
- break;
- case MODEL:
- DrawWorld(degree); /* First draw map of world. */
- XChartAstroGraph(); /* Then draw astro-graph lines on it. */
- break;
- case MODEg:
- if (relation > DASHr0)
- XChartGrid();
- else
- XChartGridRelation();
- break;
- case MODEZ:
- if (exdisplay & DASHZ0)
- XChartHorizonSky();
- else
- XChartHorizon();
- break;
- case MODES:
- XChartSpace();
- break;
- case MODEE:
- XChartEphemeris();
- break;
- case MODEW:
- DrawWorld(degree); /* First draw map of world. */
- if (xbonus && (exdisplay & DASHXW0) == 0) /* Then maybe Ley lines. */
- DrawLeyLines(degree);
- break;
- case MODEG:
- case MODEP:
- DrawGlobe(degree);
- break;
- #ifdef BIORHYTHM
- case MODEb:
- XChartBiorhythm();
- break;
- #endif
- }
-
- /* Print text showing chart information at bottom of window. */
-
- DrawColor(hilite);
- if (xtext && modex != MODEW && modex != MODEG && modex != MODEP &&
- ((modex != MODEv && modex != MODEw) || (exdisplay & DASHv0) > 0)) {
- if (Mon == -1)
- sprintf(string, "(no time or space)");
- else if (relation == DASHrc)
- sprintf(string, "(composite)");
- else {
- i = (int) (FRACT(dabs(Tim))*100.0+ROUND/60.0);
- j = (int) (FRACT(dabs(Zon))*100.0+ROUND/60.0);
- k = ansi; ansi = FALSE;
- sprintf(string, "%s %s (%d:%02d GMT) %s",
- CharDate(Mon, Day, Yea, 2), CharTime((int)floor(Tim), i),
- (int)(-Zon), j, CharLocation(Lon, Lat, 100.0));
- ansi = k;
- }
- DrawText(string, chartx/2, charty-3*scalet, TRUE);
- }
-
- /* Draw a border around the chart if the mode is set and appropriate. */
-
- if ((xborder || modex == MODEg) && modex != MODEG && modex != MODEP &&
- (modex != MODEW || (exdisplay & DASHXW0) == 0))
- DrawEdgeAll();
- }
- #endif /* GRAPH */
-
- /* xoptions.c */
-