home *** CD-ROM | disk | FTP | other *** search
- /*
- * UFC-crypt: ultra fast crypt(3) implementation
- *
- * Copyright (C) 1991, 1992, Free Software Foundation, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the Free
- * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * @(#)crypt_util.c 2.40 09/21/92
- *
- * Support routines
- *
- */
-
- #ifdef DEBUG
- #include <stdio.h>
- #endif
-
- #ifndef STATIC
- #define STATIC static
- #endif
-
- #ifndef DOS
- #include "patchlevel.h"
- #include "ufc-crypt.h"
- #else
- /*
- * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
- * for DOS patches
- */
- #include "pl.h"
- #include "ufc.h"
- #endif
-
- static char patchlevel_str[] = PATCHLEVEL;
-
- /*
- * Permutation done once on the 56 bit
- * key derived from the original 8 byte ASCII key.
- */
- static int pc1[56] = {
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
- };
-
- /*
- * How much to rotate each 28 bit half of the pc1 permutated
- * 56 bit key before using pc2 to give the i' key
- */
- static int rots[16] = {
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
- };
-
- /*
- * Permutation giving the key
- * of the i' DES round
- */
- static int pc2[48] = {
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
- };
-
- /*
- * The E expansion table which selects
- * bits from the 32 bit intermediate result.
- */
- static int esel[48] = {
- 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
- };
- static int e_inverse[64];
-
- /*
- * Permutation done on the
- * result of sbox lookups
- */
- static int perm32[32] = {
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
- };
-
- /*
- * The sboxes
- */
- static int sbox[8][4][16]= {
- { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
- { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
- { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
- { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
- },
-
- { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
- { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
- { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
- { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
- },
-
- { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
- { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
- { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
- { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
- },
-
- { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
- { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
- { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
- { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
- },
-
- { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
- { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
- { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
- { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
- },
-
- { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
- { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
- { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
- { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
- },
-
- { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
- { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
- { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
- { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
- },
-
- { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
- { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
- { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
- { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
- }
- };
-
- /*
- * This is the initial
- * permutation matrix
- */
- static int initial_perm[64] = {
- 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
- 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
- 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
- 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
- };
-
- /*
- * This is the final
- * permutation matrix
- */
- static int final_perm[64] = {
- 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
- 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
- 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
- 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
- };
-
- /*
- * The 16 DES keys in BITMASK format
- */
- #ifdef _UFC_32_
- long32 _ufc_keytab[16][2];
- #endif
- #ifdef _UFC_64_
- long64 _ufc_keytab[16];
- #endif
-
- #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
- #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
-
- /* Macro to set a bit (0..23) */
- #define BITMASK(i) ( (1L<<(11L-(i)%12L+3L)) << ((i)<12L?16L:0L) )
-
- /*
- * sb arrays:
- *
- * Workhorses of the inner loop of the DES implementation.
- * They do sbox lookup, shifting of this value, 32 bit
- * permutation and E permutation for the next round.
- *
- * Kept in 'BITMASK' format.
- */
-
- #ifdef _UFC_32_
- long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
- static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
- #endif
-
- #ifdef _UFC_64_
- long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
- static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
- #endif
-
- /*
- * eperm32tab: do 32 bit permutation and E selection
- *
- * The first index is the byte number in the 32 bit value to be permuted
- * - second - is the value of this byte
- * - third - selects the two 32 bit values
- *
- * The table is used and generated internally in init_des to speed it up
- */
- static ufc_long eperm32tab[4][256][2];
-
- /*
- * do_pc1: permform pc1 permutation in the key schedule generation.
- *
- * The first index is the byte number in the 8 byte ASCII key
- * - second - - the two 28 bits halfs of the result
- * - third - selects the 7 bits actually used of each byte
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
- static ufc_long do_pc1[8][2][128];
-
- /*
- * do_pc2: permform pc2 permutation in the key schedule generation.
- *
- * The first index is the septet number in the two 28 bit intermediate values
- * - second - - - septet values
- *
- * Knowledge of the structure of the pc2 permutation is used.
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
- static ufc_long do_pc2[8][128];
-
- /*
- * efp: undo an extra e selection and do final
- * permutation giving the DES result.
- *
- * Invoked 6 bit a time on two 48 bit values
- * giving two 32 bit longs.
- */
- static ufc_long efp[16][64][2];
-
- /*
- * revfinal: undo final permutation and do E expension.
- *
- * Invoked 6 bit a time on DES output
- * giving 4 32 bit longs.
- */
- static ufc_long revfinal[11][64][4];
-
-
- static unsigned char bytemask[8] = {
- 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
- };
-
- static ufc_long longmask[32] = {
- 0x80000000, 0x40000000, 0x20000000, 0x10000000,
- 0x08000000, 0x04000000, 0x02000000, 0x01000000,
- 0x00800000, 0x00400000, 0x00200000, 0x00100000,
- 0x00080000, 0x00040000, 0x00020000, 0x00010000,
- 0x00008000, 0x00004000, 0x00002000, 0x00001000,
- 0x00000800, 0x00000400, 0x00000200, 0x00000100,
- 0x00000080, 0x00000040, 0x00000020, 0x00000010,
- 0x00000008, 0x00000004, 0x00000002, 0x00000001
- };
-
- #ifdef DEBUG
-
- pr_bits(a, n)
- ufc_long *a;
- int n;
- { ufc_long i, j, t, tmp;
- n /= 8;
- for(i = 0; i < n; i++) {
- tmp=0;
- for(j = 0; j < 8; j++) {
- t=8*i+j;
- tmp|=(a[t/24] & BITMASK(t % 24))?bytemask[j]:0;
- }
- (void)printf("%02x ",tmp);
- }
- printf(" ");
- }
-
- static set_bits(v, b)
- ufc_long v;
- ufc_long *b;
- { ufc_long i;
- *b = 0;
- for(i = 0; i < 24; i++) {
- if(v & longmask[8 + i])
- *b |= BITMASK(i);
- }
- }
-
- #endif
-
- /*
- * Silly rewrite of 'bzero'. I do so
- * because some machines don't have
- * bzero and some don't have memset.
- */
-
- STATIC void clearmem(start, cnt)
- char *start;
- int cnt;
- { while(cnt--)
- *start++ = '\0';
- }
-
- static int initialized = 0;
-
- /* lookup a 6 bit value in sbox */
-
- #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
-
- /*
- * Initialize unit - may be invoked directly
- * by fcrypt users.
- */
-
- void init_des()
- { int comes_from_bit;
- int bit, sg;
- ufc_long j;
- ufc_long mask1, mask2;
-
- /*
- * Create the do_pc1 table used
- * to affect pc1 permutation
- * when generating keys
- */
- for(bit = 0; bit < 56; bit++) {
- comes_from_bit = pc1[bit] - 1;
- mask1 = bytemask[comes_from_bit % 8 + 1];
- mask2 = longmask[bit % 28 + 4];
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
- }
- }
-
- /*
- * Create the do_pc2 table used
- * to affect pc2 permutation when
- * generating keys
- */
- for(bit = 0; bit < 48; bit++) {
- comes_from_bit = pc2[bit] - 1;
- mask1 = bytemask[comes_from_bit % 7 + 1];
- mask2 = BITMASK(bit % 24);
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc2[comes_from_bit / 7][j] |= mask2;
- }
- }
-
- /*
- * Now generate the table used to do combined
- * 32 bit permutation and e expansion
- *
- * We use it because we have to permute 16384 32 bit
- * longs into 48 bit in order to initialize sb.
- *
- * Looping 48 rounds per permutation becomes
- * just too slow...
- *
- */
-
- clearmem((char*)eperm32tab, sizeof(eperm32tab));
-
- for(bit = 0; bit < 48; bit++) {
- ufc_long mask1,comes_from;
-
- comes_from = perm32[esel[bit]-1]-1;
- mask1 = bytemask[comes_from % 8];
-
- for(j = 256; j--;) {
- if(j & mask1)
- eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
- }
- }
-
- /*
- * Create the sb tables:
- *
- * For each 12 bit segment of an 48 bit intermediate
- * result, the sb table precomputes the two 4 bit
- * values of the sbox lookups done with the two 6
- * bit halves, shifts them to their proper place,
- * sends them through perm32 and finally E expands
- * them so that they are ready for the next
- * DES round.
- *
- */
- for(sg = 0; sg < 4; sg++) {
- int j1, j2;
- int s1, s2;
-
- for(j1 = 0; j1 < 64; j1++) {
- s1 = s_lookup(2 * sg, j1);
- for(j2 = 0; j2 < 64; j2++) {
- ufc_long to_permute, inx;
-
- s2 = s_lookup(2 * sg + 1, j2);
- to_permute = (((ufc_long)s1 << 4) |
- (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
-
- #ifdef _UFC_32_
- inx = ((j1 << 6) | j2) << 1;
- sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
- sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
- #endif
- #ifdef _UFC_64_
- inx = ((j1 << 6) | j2);
- sb[sg][inx] =
- ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
- (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
- (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
- (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
- (long64)eperm32tab[3][(to_permute) & 0xff][1];
- #endif
- }
- }
- }
-
- /*
- * Create an inverse matrix for esel telling
- * where to plug out bits if undoing it
- */
- for(bit=48; bit--;) {
- e_inverse[esel[bit] - 1 ] = bit;
- e_inverse[esel[bit] - 1 + 32] = bit + 48;
- }
-
- /*
- * create efp: the matrix used to
- * undo the E expansion and effect final permutation
- */
- clearmem((char*)efp, sizeof efp);
- for(bit = 0; bit < 64; bit++) {
- int o_bit, o_long;
- ufc_long word_value, mask1, mask2;
- int comes_from_f_bit, comes_from_e_bit;
- int comes_from_word, bit_within_word;
-
- /* See where bit i belongs in the two 32 bit long's */
- o_long = bit / 32; /* 0..1 */
- o_bit = bit % 32; /* 0..31 */
-
- /*
- * And find a bit in the e permutated value setting this bit.
- *
- * Note: the e selection may have selected the same bit several
- * times. By the initialization of e_inverse, we only look
- * for one specific instance.
- */
- comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
- comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
- comes_from_word = comes_from_e_bit / 6; /* 0..15 */
- bit_within_word = comes_from_e_bit % 6; /* 0..5 */
-
- mask1 = longmask[bit_within_word + 26];
- mask2 = longmask[o_bit];
-
- for(word_value = 64; word_value--;) {
- if(word_value & mask1)
- efp[comes_from_word][word_value][o_long] |= mask2;
- }
- }
-
-
- /*
- * Create revfinal: an array to undo final
- * the effects of efp
- */
- clearmem((char*)revfinal, sizeof(revfinal));
- for(bit = 0; bit < 96; bit++) {
- int ibit = initial_perm[esel[bit % 48] - 1 + ((bit >= 48) ? 32 : 0)] - 1;
- mask1 = bytemask[ibit % 6 + 2];
- mask2 = BITMASK(bit % 24);
- for(j = 64; j--;) {
- if(j & mask1) {
- revfinal[ibit / 6][j][bit / 24] |= mask2;
- }
- }
- }
-
- initialized++;
- }
-
- /*
- * Process the elements of the sb table permuting the
- * bits swapped in the expansion by the current salt.
- */
-
- #ifdef _UFC_32_
- STATIC void shuffle_sb(k, saltbits)
- long32 *k;
- ufc_long saltbits;
- { ufc_long j;
- long32 x;
- for(j=4096; j--;) {
- x = (k[0] ^ k[1]) & (long32)saltbits;
- *k++ ^= x;
- *k++ ^= x;
- }
- }
- #endif
-
- #ifdef _UFC_64_
- STATIC void shuffle_sb(k, saltbits)
- long64 *k;
- ufc_long saltbits;
- { ufc_long j;
- long64 x;
- for(j=4096; j--;) {
- x = ((*k >> 32) ^ *k) & (long64)saltbits;
- *k++ ^= (x << 32) | x;
- }
- }
- #endif
-
- /*
- * Setup the unit for a new salt
- * Hopefully we'll not see a new salt in each crypt call.
- */
-
- static unsigned char current_salt[3] = "&&"; /* invalid value */
- static ufc_long current_saltbits = 0;
- static int direction = 0;
-
- STATIC void setup_salt(s)
- char *s;
- { ufc_long i, j, saltbits;
-
- if(!initialized)
- init_des();
-
- if(s[0] == current_salt[0] && s[1] == current_salt[1])
- return;
- current_salt[0] = s[0]; current_salt[1] = s[1];
-
- /*
- * This is the only crypt change to DES:
- * entries are swapped in the expansion table
- * according to the bits set in the salt.
- */
- saltbits = 0;
- for(i = 0; i < 2; i++) {
- long c=ascii_to_bin(s[i]);
- #ifdef notdef
- /*
- * Some applications do rely on illegal
- * salts. It seems that UFC-crypt behaves
- * identically to standard crypt
- * implementations on illegal salts -- glad
- */
- if(c < 0 || c > 63)
- c = 0;
- #endif
- for(j = 0; j < 6; j++) {
- if((c >> j) & 0x1)
- saltbits |= BITMASK(6 * i + j);
- }
- }
-
- /*
- * Permute the sb table values
- * to reflect the changed e
- * selection table
- */
- shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
- shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
-
- current_saltbits = saltbits;
- }
-
- STATIC void ufc_mk_keytab(key)
- char *key;
- { ufc_long v1, v2, *k1;
- int i;
- #ifdef _UFC_32_
- long32 v, *k2 = &_ufc_keytab[0][0];
- #endif
- #ifdef _UFC_64_
- long64 v, *k2 = &_ufc_keytab[0];
- #endif
-
- v1 = v2 = 0; k1 = &do_pc1[0][0][0];
- for(i = 8; i--;) {
- v1 |= k1[*key & 0x7f]; k1 += 128;
- v2 |= k1[*key++ & 0x7f]; k1 += 128;
- }
-
- for(i = 0; i < 16; i++) {
- k1 = &do_pc2[0][0];
-
- v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
- v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v1 ) & 0x7f]; k1 += 128;
-
- #ifdef _UFC_32_
- *k2++ = v;
- v = 0;
- #endif
- #ifdef _UFC_64_
- v <<= 32;
- #endif
-
- v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
- v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v2 ) & 0x7f];
-
- *k2++ = v;
- }
-
- direction = 0;
- }
-
- /*
- * Undo an extra E selection and do final permutations
- */
-
- ufc_long *_ufc_dofinalperm(l1, l2, r1, r2)
- ufc_long l1,l2,r1,r2;
- { ufc_long v1, v2, x;
- static ufc_long ary[2];
-
- x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
- x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
-
- v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
-
- v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
- v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
- v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
- v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
-
- v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
- v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
- v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
- v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
-
- v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
- v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
- v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
- v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
-
- v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
- v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
- v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
- v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
-
- ary[0] = v1; ary[1] = v2;
- return ary;
- }
-
- /*
- * crypt only: convert from 64 bit to 11 bit ASCII
- * prefixing with the salt
- */
-
- STATIC char *output_conversion(v1, v2, salt)
- ufc_long v1, v2;
- char *salt;
- { static char outbuf[14];
- int i, s, shf;
-
- outbuf[0] = salt[0];
- outbuf[1] = salt[1] ? salt[1] : salt[0];
-
- for(i = 0; i < 5; i++) {
- shf = (26 - 6 * i); /* to cope with MSC compiler bug */
- outbuf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
- }
-
- s = (v2 & 0xf) << 2;
- v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
-
- for(i = 5; i < 10; i++) {
- shf = (56 - 6 * i);
- outbuf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
- }
-
- outbuf[12] = bin_to_ascii(s);
- outbuf[13] = 0;
-
- return outbuf;
- }
-
- ufc_long *_ufc_doit();
-
- /*
- * UNIX crypt function
- */
-
- char *crypt(key, salt)
- char *key, *salt;
- { ufc_long *s;
- char ktab[9];
-
- /*
- * Hack DES tables according to salt
- */
- setup_salt(salt);
-
- /*
- * Setup key schedule
- */
- clearmem(ktab, sizeof ktab);
- (void)strncpy(ktab, key, 8);
- ufc_mk_keytab(ktab);
-
- /*
- * Go for the 25 DES encryptions
- */
- s = _ufc_doit((ufc_long)0, (ufc_long)0,
- (ufc_long)0, (ufc_long)0, (ufc_long)25);
- /*
- * Do final permutations
- */
- s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]);
-
- /*
- * And convert back to 6 bit ASCII
- */
- return output_conversion(s[0], s[1], salt);
- }
-
- /*
- * To make fcrypt users happy.
- * They don't need to call init_des.
- */
-
- char *fcrypt(key, salt)
- char *key;
- char *salt;
- { return crypt(key, salt);
- }
-
- /*
- * UNIX encrypt function. Takes a bitvector
- * represented by one byte per bit and
- * encrypt/decrypt according to edflag
- */
-
- void encrypt(block, edflag)
- char *block;
- int edflag;
- { ufc_long l1, l2, r1, r2, *s;
- int i;
-
- /*
- * Undo any salt changes to E expansion
- */
- setup_salt("..");
-
- /*
- * Reverse key table if
- * changing operation (encrypt/decrypt)
- */
- if((edflag == 0) != (direction == 0)) {
- for(i = 0; i < 8; i++) {
- #ifdef _UFC_32_
- long32 x;
- x = _ufc_keytab[15-i][0];
- _ufc_keytab[15-i][0] = _ufc_keytab[i][0];
- _ufc_keytab[i][0] = x;
-
- x = _ufc_keytab[15-i][1];
- _ufc_keytab[15-i][1] = _ufc_keytab[i][1];
- _ufc_keytab[i][1] = x;
- #endif
- #ifdef _UFC_64_
- long64 x;
- x = _ufc_keytab[15-i];
- _ufc_keytab[15-i] = _ufc_keytab[i];
- _ufc_keytab[i] = x;
- #endif
- }
- direction = edflag;
- }
-
- /*
- * Do initial permutation + E expansion
- */
- i = 0;
- for(l1 = 0; i < 24; i++) {
- if(block[initial_perm[esel[i]-1]-1])
- l1 |= BITMASK(i);
- }
- for(l2 = 0; i < 48; i++) {
- if(block[initial_perm[esel[i]-1]-1])
- l2 |= BITMASK(i-24);
- }
-
- i = 0;
- for(r1 = 0; i < 24; i++) {
- if(block[initial_perm[esel[i]-1+32]-1])
- r1 |= BITMASK(i);
- }
- for(r2 = 0; i < 48; i++) {
- if(block[initial_perm[esel[i]-1+32]-1])
- r2 |= BITMASK(i-24);
- }
-
- /*
- * Do DES inner loops + final conversion
- */
- s = _ufc_doit(l1, l2, r1, r2, (ufc_long)1);
- /*
- * Do final permutations
- */
- s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]);
-
- /*
- * And convert to bit array
- */
- l1 = s[0]; r1 = s[1];
- for(i = 0; i < 32; i++) {
- *block++ = (l1 & longmask[i]) != 0;
- }
- for(i = 0; i < 32; i++) {
- *block++ = (r1 & longmask[i]) != 0;
- }
-
- }
-
- /*
- * UNIX setkey function. Take a 64 bit DES
- * key and setup the machinery.
- */
-
- void setkey(key)
- char *key;
- { int i,j;
- unsigned char c;
- unsigned char ktab[8];
-
- setup_salt(".."); /* be sure we're initialized */
-
- for(i = 0; i < 8; i++) {
- for(j = 0, c = 0; j < 8; j++)
- c = c << 1 | *key++;
- ktab[i] = c >> 1;
- }
-
- ufc_mk_keytab(ktab);
- }
-
- /*
- * Ultrix crypt16 function, thanks to pcl@convex.oxford.ac.uk (Paul Leyland)
- */
-
- char *crypt16(key, salt)
- char *key, *salt;
- { ufc_long *s, *t;
- char ktab[9], ttab[9];
- static char q[14], res[25];
- /*
- * Hack DES tables according to salt
- */
- setup_salt(salt);
-
- /*
- * Setup key schedule
- */
- clearmem(ktab, sizeof ktab);
- (void)strncpy(ktab, key, 8);
- ufc_mk_keytab(ktab);
-
- /*
- * Go for first 20 DES encryptions
- */
- s = _ufc_doit((ufc_long)0, (ufc_long)0,
- (ufc_long)0, (ufc_long)0, (ufc_long)20);
-
- /*
- * And convert back to 6 bit ASCII
- */
- strcpy (res, output_conversion(s[0], s[1], salt));
-
- clearmem(ttab, sizeof ttab);
- if (strlen (key) > 8) (void)strncpy(ttab, key+8, 8);
- ufc_mk_keytab(ttab);
-
- /*
- * Go for second 5 DES encryptions
- */
- t = _ufc_doit((ufc_long)0, (ufc_long)0,
- (ufc_long)0, (ufc_long)0, (ufc_long)5);
- /*
- * And convert back to 6 bit ASCII
- */
- strcpy (q, output_conversion(t[0], t[1], salt));
- strcpy (res+13, q+2);
-
- clearmem(ktab, sizeof ktab);
- (void)strncpy(ktab, key, 8);
- ufc_mk_keytab(ktab);
-
- return res;
- }
-
- /*
- * Experimental -- not supported -- may choke your dog
- */
-
- void ufc_setup_password(cookie, s)
- long *cookie;
- char *s;
- { char c;
- int i;
- ufc_long x;
- ufc_long dl1, dl2, dr1, dr2;
-
- setup_salt(s);
- dl1 = dl2 = dr1 = dr2 = 0;
- for(i = 0, s += 2; c = *s++; i++) {
- int x = ascii_to_bin(c);
- dl1 |= revfinal[i][x][0];
- dl2 |= revfinal[i][x][1];
- dr1 |= revfinal[i][x][2];
- dr2 |= revfinal[i][x][3];
- }
- x = (dl1 ^ dl2) & current_saltbits;
- x = (dr1 ^ dr2) & current_saltbits;
- cookie[0] = dl1 ^ x; cookie[1] = dl2 ^ x;
- cookie[2] = dr1 ^ x; cookie[3] = dr2 ^ x;
- }
-
- void ufc_do_pw(cookie, guess)
- long *cookie;
- char *guess;
- { char ktab[9];
- ufc_long *s;
- clearmem(ktab, sizeof ktab);
- (void)strncpy(ktab, guess, 8);
- ufc_mk_keytab(ktab);
- s = _ufc_doit((ufc_long)0, (ufc_long)0,
- (ufc_long)0, (ufc_long)0, (ufc_long)25);
- cookie[0] = s[0]; cookie[1] = s[1];
- cookie[2] = s[2]; cookie[3] = s[3];
- }
-