home *** CD-ROM | disk | FTP | other *** search
/ Celestin Apprentice 4 / Apprentice-Release4.iso / Utilities / Text / OzTeX 1.9 / TeX-inputs / PSNFSS / mathtest.tex < prev    next >
LaTeX Document  |  1995-01-23  |  2.6 KB  |  [TEXT/MPS ]

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text

This file was processed as: LaTeX Document (document/latex).

You can browse this item here: mathtest.tex

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX 2e document text default
99% file LaTeX document, ASCII text, with CR line terminators default
100% TrID LaTeX 2e document default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/280 LaTeX (Master document) default
100% detectItEasy Format: plain text[CR] default (weak)


id metadata
keyvalue
macFileType[TEXT]
macFileCreator[MPS ]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 63 6c 61 73 73 7b 61 |\documen|tclass{a|
|00000010| 72 74 69 63 6c 65 7d 0d | 25 5c 75 73 65 70 61 63 |rticle}.|%\usepac|
|00000020| 6b 61 67 65 7b 6d 61 74 | 68 74 69 6d 65 7d 0d 5c |kage{mat|htime}.\|
|00000030| 70 61 67 65 73 74 79 6c | 65 7b 65 6d 70 74 79 7d |pagestyl|e{empty}|
|00000040| 0d 5c 62 65 67 69 6e 7b | 64 6f 63 75 6d 65 6e 74 |.\begin{|document|
|00000050| 7d 0d 5c 62 65 67 69 6e | 7b 63 65 6e 74 65 72 7d |}.\begin|{center}|
|00000060| 0d 5c 62 66 5c 4c 61 72 | 67 65 20 53 65 62 61 73 |.\bf\Lar|ge Sebas|
|00000070| 74 69 61 6e 27 73 20 6d | 61 74 68 20 74 65 73 74 |tian's m|ath test|
|00000080| 0d 5c 65 6e 64 7b 63 65 | 6e 74 65 72 7d 0d 54 68 |.\end{ce|nter}.Th|
|00000090| 65 20 64 65 66 61 75 6c | 74 20 6d 61 74 68 20 6d |e defaul|t math m|
|000000a0| 6f 64 65 20 66 6f 6e 74 | 20 69 73 20 24 6d 61 74 |ode font| is $mat|
|000000b0| 68 5c 20 69 74 61 6c 69 | 63 24 2e 20 54 68 69 73 |h\ itali|c$. This|
|000000c0| 20 73 68 6f 75 6c 64 20 | 6e 6f 74 20 62 65 0d 63 | should |not be.c|
|000000d0| 6f 6e 66 75 73 65 64 20 | 77 69 74 68 20 6f 72 64 |onfused |with ord|
|000000e0| 69 6e 61 72 79 20 5c 65 | 6d 70 68 7b 74 65 78 74 |inary \e|mph{text|
|000000f0| 20 69 74 61 6c 69 63 7d | 2e 20 20 20 0d 5c 76 65 | italic}|. .\ve|
|00000100| 72 62 7c 5c 6d 61 74 68 | 62 66 7c 20 70 72 6f 64 |rb|\math|bf| prod|
|00000110| 75 63 65 73 20 5c 74 65 | 78 74 62 66 7b 62 6f 6c |uces \te|xtbf{bol|
|00000120| 64 20 66 61 63 65 20 72 | 6f 6d 61 6e 7d 20 6c 65 |d face r|oman} le|
|00000130| 74 74 65 72 73 2e 20 49 | 66 20 79 6f 75 20 77 69 |tters. I|f you wi|
|00000140| 73 68 20 74 6f 20 68 61 | 76 65 0d 7b 5c 62 6f 6c |sh to ha|ve.{\bol|
|00000150| 64 6d 61 74 68 20 24 62 | 6f 6c 64 5c 20 66 61 63 |dmath $b|old\ fac|
|00000160| 65 5c 20 6d 61 74 68 5c | 20 69 74 61 6c 69 63 24 |e\ math\| italic$|
|00000170| 7d 20 6c 65 74 74 65 72 | 73 2c 20 61 6e 64 20 62 |} letter|s, and b|
|00000180| 6f 6c 64 20 66 61 63 65 | 20 47 72 65 65 6b 0d 6c |old face| Greek.l|
|00000190| 65 74 74 65 72 73 20 61 | 6e 64 20 6d 61 74 68 65 |etters a|nd mathe|
|000001a0| 6d 61 74 69 63 61 6c 20 | 73 79 6d 62 6f 6c 73 2c |matical |symbols,|
|000001b0| 20 75 73 65 20 74 68 65 | 20 5c 76 65 72 62 7c 5c | use the| \verb|\|
|000001c0| 62 6f 6c 64 6d 61 74 68 | 7c 20 63 6f 6d 6d 61 6e |boldmath|| comman|
|000001d0| 64 0d 5c 65 6d 70 68 7b | 62 65 66 6f 72 65 7d 20 |d.\emph{|before} |
|000001e0| 67 6f 69 6e 67 20 69 6e | 74 6f 20 6d 61 74 68 20 |going in|to math |
|000001f0| 6d 6f 64 65 2e 20 20 54 | 68 69 73 20 63 68 61 6e |mode. T|his chan|
|00000200| 67 65 73 20 74 68 65 20 | 64 65 66 61 75 6c 74 20 |ges the |default |
|00000210| 6d 61 74 68 0d 66 6f 6e | 74 73 20 74 6f 20 62 6f |math.fon|ts to bo|
|00000220| 6c 64 2e 20 47 72 65 65 | 6b 20 69 73 20 61 76 61 |ld. Gree|k is ava|
|00000230| 69 6c 61 62 6c 65 20 69 | 6e 20 75 70 70 65 72 20 |ilable i|n upper |
|00000240| 61 6e 64 20 6c 6f 77 65 | 72 20 63 61 73 65 3a 0d |and lowe|r case:.|
|00000250| 5c 28 5c 61 6c 70 68 61 | 2c 5c 62 65 74 61 2c 20 |\(\alpha|,\beta, |
|00000260| 5c 47 61 6d 6d 61 2c 20 | 5c 44 65 6c 74 61 20 5c |\Gamma, |\Delta \|
|00000270| 64 6f 74 73 20 5c 6f 6d | 65 67 61 2c 20 5c 4f 6d |dots \om|ega, \Om|
|00000280| 65 67 61 5c 29 0d 20 0d | 5c 62 65 67 69 6e 7b 74 |ega\). .|\begin{t|
|00000290| 61 62 75 6c 61 72 7d 7b | 6c 6c 7d 0d 6e 6f 72 6d |abular}{|ll}.norm|
|000002a0| 61 6c 3a 20 5c 28 20 78 | 20 3d 20 32 5c 70 69 20 |al: \( x| = 2\pi |
|000002b0| 5c 52 69 67 68 74 61 72 | 72 6f 77 20 78 20 5c 73 |\Rightar|row x \s|
|000002c0| 69 6d 65 71 20 36 2e 32 | 38 20 5c 29 5c 5c 0d 6d |imeq 6.2|8 \)\\.m|
|000002d0| 61 74 68 62 66 20 5c 28 | 5c 6d 61 74 68 62 66 7b |athbf \(|\mathbf{|
|000002e0| 78 7d 20 3d 20 32 5c 70 | 69 20 5c 52 69 67 68 74 |x} = 2\p|i \Right|
|000002f0| 61 72 72 6f 77 20 78 20 | 5c 73 69 6d 65 71 20 36 |arrow x |\simeq 6|
|00000300| 2e 32 38 20 5c 29 5c 5c | 0d 62 6f 6c 64 6d 61 74 |.28 \)\\|.boldmat|
|00000310| 68 20 7b 5c 62 6f 6c 64 | 6d 61 74 68 20 5c 28 78 |h {\bold|math \(x|
|00000320| 20 3d 20 5c 6d 61 74 68 | 62 66 7b 32 7d 5c 70 69 | = \math|bf{2}\pi|
|00000330| 20 5c 52 69 67 68 74 61 | 72 72 6f 77 20 78 20 0d | \Righta|rrow x .|
|00000340| 20 20 20 20 20 20 20 20 | 20 20 20 5c 73 69 6d 65 | | \sime|
|00000350| 71 7b 5c 6d 61 74 68 62 | 66 7b 36 2e 32 38 7d 7d |q{\mathb|f{6.28}}|
|00000360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 5c 29 | | \)|
|00000370| 7d 5c 5c 0d 5c 65 6e 64 | 7b 74 61 62 75 6c 61 72 |}\\.\end|{tabular|
|00000380| 7d 0d 20 0d 5c 6e 6f 69 | 6e 64 65 6e 74 20 54 68 |}. .\noi|ndent Th|
|00000390| 65 72 65 20 69 73 20 61 | 6c 73 6f 20 61 20 63 61 |ere is a|lso a ca|
|000003a0| 6c 6c 69 67 72 61 70 68 | 69 63 20 66 6f 6e 74 20 |lligraph|ic font |
|000003b0| 66 6f 72 20 75 70 70 65 | 72 20 63 61 73 65 20 6c |for uppe|r case l|
|000003c0| 65 74 74 65 72 73 3b 0d | 74 68 65 73 65 20 61 72 |etters;.|these ar|
|000003d0| 65 20 70 72 6f 64 75 63 | 65 64 20 62 79 20 74 68 |e produc|ed by th|
|000003e0| 65 20 5c 76 65 72 62 7c | 5c 6d 61 74 68 63 61 6c |e \verb||\mathcal|
|000003f0| 7c 20 63 6f 6d 6d 61 6e | 64 3a 5c 28 20 5c 6d 61 || comman|d:\( \ma|
|00000400| 74 68 63 61 6c 7b 41 42 | 43 44 45 7d 20 5c 29 0d |thcal{AB|CDE} \).|
|00000410| 20 0d 0d 5c 62 65 67 69 | 6e 7b 65 71 75 61 74 69 | ..\begi|n{equati|
|00000420| 6f 6e 7d 0d 20 20 5c 70 | 68 69 28 74 29 3d 5c 66 |on}. \p|hi(t)=\f|
|00000430| 72 61 63 7b 31 7d 7b 5c | 73 71 72 74 7b 32 5c 70 |rac{1}{\|sqrt{2\p|
|00000440| 69 7d 7d 0d 20 20 5c 69 | 6e 74 5e 74 5f 30 20 65 |i}}. \i|nt^t_0 e|
|00000450| 5e 7b 2d 78 5e 32 2f 32 | 7d 20 64 78 20 0d 5c 65 |^{-x^2/2|} dx .\e|
|00000460| 6e 64 7b 65 71 75 61 74 | 69 6f 6e 7d 0d 0d 5c 62 |nd{equat|ion}..\b|
|00000470| 65 67 69 6e 7b 65 71 75 | 61 74 69 6f 6e 7d 0d 20 |egin{equ|ation}. |
|00000480| 20 5c 70 72 6f 64 5f 7b | 6a 5c 67 65 71 20 30 7d | \prod_{|j\geq 0}|
|00000490| 0d 20 20 5c 6c 65 66 74 | 28 5c 73 75 6d 5f 7b 6b |. \left|(\sum_{k|
|000004a0| 5c 67 65 71 20 30 7d 61 | 5f 7b 6a 6b 7d 20 7a 5e |\geq 0}a|_{jk} z^|
|000004b0| 6b 5c 72 69 67 68 74 29 | 20 0d 3d 20 5c 73 75 6d |k\right)| .= \sum|
|000004c0| 5f 7b 6b 5c 67 65 71 20 | 30 7d 20 7a 5e 6e 0d 20 |_{k\geq |0} z^n. |
|000004d0| 20 5c 6c 65 66 74 28 20 | 5c 73 75 6d 5f 7b 7b 6b | \left( |\sum_{{k|
|000004e0| 5f 30 2c 6b 5f 31 2c 5c | 6c 64 6f 74 73 5c 67 65 |_0,k_1,\|ldots\ge|
|000004f0| 71 20 30 7d 0d 20 20 20 | 20 20 20 20 20 20 20 5c |q 0}. | \|
|00000500| 61 74 6f 70 7b 6b 5f 30 | 2b 6b 5f 31 2b 5c 6c 64 |atop{k_0|+k_1+\ld|
|00000510| 6f 74 73 3d 6e 7d 20 20 | 20 20 7d 0d 20 20 20 20 |ots=n} | }. |
|00000520| 20 20 20 20 61 7b 5f 30 | 6b 5f 30 7d 61 5f 7b 31 | a{_0|k_0}a_{1|
|00000530| 6b 5f 31 7d 5c 6c 64 6f | 74 73 20 20 5c 72 69 67 |k_1}\ldo|ts \rig|
|00000540| 68 74 29 20 0d 5c 65 6e | 64 7b 65 71 75 61 74 69 |ht) .\en|d{equati|
|00000550| 6f 6e 7d 0d 0d 5c 62 65 | 67 69 6e 7b 65 71 75 61 |on}..\be|gin{equa|
|00000560| 74 69 6f 6e 7d 0d 5c 70 | 69 28 6e 29 20 3d 20 5c |tion}.\p|i(n) = \|
|00000570| 73 75 6d 5f 7b 6d 3d 32 | 7d 5e 7b 6e 7d 0d 20 20 |sum_{m=2|}^{n}. |
|00000580| 5c 6c 65 66 74 5c 6c 66 | 6c 6f 6f 72 20 5c 6c 65 |\left\lf|loor \le|
|00000590| 66 74 28 5c 73 75 6d 5f | 7b 6b 3d 31 7d 5e 7b 6d |ft(\sum_|{k=1}^{m|
|000005a0| 2d 31 7d 0d 20 20 20 20 | 20 20 20 5c 6c 66 6c 6f |-1}. | \lflo|
|000005b0| 6f 72 28 6d 2f 6b 29 2f | 5c 6c 63 65 69 6c 20 6d |or(m/k)/|\lceil m|
|000005c0| 2f 6b 5c 72 63 65 69 6c | 20 0d 20 20 20 20 20 20 |/k\rceil| . |
|000005d0| 20 5c 72 66 6c 6f 6f 72 | 20 5c 72 69 67 68 74 29 | \rfloor| \right)|
|000005e0| 5e 7b 2d 31 7d 0d 20 20 | 5c 72 69 67 68 74 5c 72 |^{-1}. |\right\r|
|000005f0| 66 6c 6f 6f 72 0d 5c 65 | 6e 64 7b 65 71 75 61 74 |floor.\e|nd{equat|
|00000600| 69 6f 6e 7d 0d 0d 5c 62 | 65 67 69 6e 7b 65 71 75 |ion}..\b|egin{equ|
|00000610| 61 74 69 6f 6e 7d 0d 5c | 7b 5c 75 6e 64 65 72 62 |ation}.\|{\underb|
|00000620| 72 61 63 65 7b 25 0d 20 | 20 20 20 5c 6f 76 65 72 |race{%. | \over|
|00000630| 62 72 61 63 65 7b 5c 6d | 61 74 68 73 74 72 75 74 |brace{\m|athstrut|
|00000640| 20 61 2c 5c 6c 64 6f 74 | 73 2c 61 7d 5e 7b 6b 5c | a,\ldot|s,a}^{k\|
|00000650| 20 61 27 73 7d 2c 0d 20 | 20 20 20 5c 6f 76 65 72 | a's},. | \over|
|00000660| 62 72 61 63 65 7b 5c 6d | 61 74 68 73 74 72 75 74 |brace{\m|athstrut|
|00000670| 20 62 2c 5c 6c 64 6f 74 | 73 2c 62 7d 5e 7b 6c 5c | b,\ldot|s,b}^{l\|
|00000680| 20 62 27 73 7d 7d 0d 20 | 20 5f 7b 6b 2b 31 5c 20 | b's}}. | _{k+1\ |
|00000690| 5c 6d 61 74 68 72 6d 7b | 65 6c 65 6d 65 6e 74 73 |\mathrm{|elements|
|000006a0| 7d 7d 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |}} | |
|000006b0| 20 20 20 20 20 5c 7d 0d | 5c 65 6e 64 7b 65 71 75 | \}.|\end{equ|
|000006c0| 61 74 69 6f 6e 7d 0d 0d | 5c 62 65 67 69 6e 7b 64 |ation}..|\begin{d|
|000006d0| 69 73 70 6c 61 79 6d 61 | 74 68 7d 0d 5c 6d 62 6f |isplayma|th}.\mbo|
|000006e0| 78 7b 57 7d 5e 2b 5c 0d | 5c 62 65 67 69 6e 7b 61 |x{W}^+\.|\begin{a|
|000006f0| 72 72 61 79 7d 7b 6c 7d | 0d 5c 6e 65 61 72 72 6f |rray}{l}|.\nearro|
|00000700| 77 5c 72 61 69 73 65 35 | 70 74 5c 68 62 6f 78 7b |w\raise5|pt\hbox{|
|00000710| 24 5c 6d 75 5e 2b 20 2b | 20 5c 6e 75 5f 7b 5c 6d |$\mu^+ +| \nu_{\m|
|00000720| 75 7d 24 7d 5c 5c 0d 5c | 72 69 67 68 74 61 72 72 |u}$}\\.\|rightarr|
|00000730| 6f 77 20 20 20 20 20 20 | 20 20 20 5c 70 69 5e 2b |ow | \pi^+|
|00000740| 20 2b 5c 70 69 5e 30 20 | 20 20 20 20 20 20 20 20 | +\pi^0 | |
|00000750| 5c 5c 5b 35 70 74 5d 0d | 5c 72 69 67 68 74 61 72 |\\[5pt].|\rightar|
|00000760| 72 6f 77 20 5c 6b 61 70 | 70 61 5e 2b 20 2b 5c 70 |row \kap|pa^+ +\p|
|00000770| 69 5e 30 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |i^0 | |
|00000780| 20 5c 5c 0d 5c 73 65 61 | 72 72 6f 77 5c 6c 6f 77 | \\.\sea|rrow\low|
|00000790| 65 72 35 70 74 5c 68 62 | 6f 78 7b 24 5c 6d 61 74 |er5pt\hb|ox{$\mat|
|000007a0| 68 72 6d 7b 65 7d 5e 2b | 20 0d 20 20 20 20 20 20 |hrm{e}^+| . |
|000007b0| 20 20 20 20 2b 5c 6e 75 | 5f 7b 5c 73 63 72 69 70 | +\nu|_{\scrip|
|000007c0| 74 73 74 79 6c 65 5c 6d | 61 74 68 72 6d 7b 65 7d |tstyle\m|athrm{e}|
|000007d0| 7d 24 7d 0d 5c 65 6e 64 | 7b 61 72 72 61 79 7d 0d |}$}.\end|{array}.|
|000007e0| 5c 65 6e 64 7b 64 69 73 | 70 6c 61 79 6d 61 74 68 |\end{dis|playmath|
|000007f0| 7d 0d 0d 5c 62 65 67 69 | 6e 7b 64 69 73 70 6c 61 |}..\begi|n{displa|
|00000800| 79 6d 61 74 68 7d 0d 5c | 66 72 61 63 7b 5c 70 6d |ymath}.\|frac{\pm|
|00000810| 0d 5c 6c 65 66 74 7c 5c | 62 65 67 69 6e 7b 61 72 |.\left|\|begin{ar|
|00000820| 72 61 79 7d 7b 63 63 63 | 7d 0d 78 5f 31 2d 78 5f |ray}{ccc|}.x_1-x_|
|00000830| 32 20 20 26 20 79 5f 31 | 2d 79 5f 32 20 26 20 7a |2 & y_1|-y_2 & z|
|00000840| 5f 31 2d 7a 5f 32 20 5c | 5c 0d 6c 5f 31 20 20 20 |_1-z_2 \|\.l_1 |
|00000850| 20 20 20 26 20 6d 5f 31 | 20 20 20 20 20 26 20 6e | & m_1| & n|
|00000860| 5f 31 20 20 20 20 20 5c | 5c 0d 6c 5f 32 20 20 20 |_1 \|\.l_2 |
|00000870| 20 20 20 26 20 6d 5f 32 | 20 20 20 20 20 26 20 6e | & m_2| & n|
|00000880| 5f 32 0d 5c 65 6e 64 7b | 61 72 72 61 79 7d 5c 72 |_2.\end{|array}\r|
|00000890| 69 67 68 74 7c 7d 7b 0d | 5c 73 71 72 74 7b 5c 6c |ight|}{.|\sqrt{\l|
|000008a0| 65 66 74 7c 5c 62 65 67 | 69 6e 7b 61 72 72 61 79 |eft|\beg|in{array|
|000008b0| 7d 7b 63 63 7d 6c 5f 31 | 26 6d 5f 31 5c 5c 0d 6c |}{cc}l_1|&m_1\\.l|
|000008c0| 5f 32 26 6d 5f 32 5c 65 | 6e 64 7b 61 72 72 61 79 |_2&m_2\e|nd{array|
|000008d0| 7d 5c 72 69 67 68 74 7c | 5e 32 0d 2b 20 20 20 20 |}\right||^2.+ |
|000008e0| 20 5c 6c 65 66 74 7c 5c | 62 65 67 69 6e 7b 61 72 | \left|\|begin{ar|
|000008f0| 72 61 79 7d 7b 63 63 7d | 6d 5f 31 26 6e 5f 31 5c |ray}{cc}|m_1&n_1\|
|00000900| 5c 0d 6e 5f 31 26 6c 5f | 31 5c 65 6e 64 7b 61 72 |\.n_1&l_|1\end{ar|
|00000910| 72 61 79 7d 5c 72 69 67 | 68 74 7c 5e 32 0d 2b 20 |ray}\rig|ht|^2.+ |
|00000920| 20 20 20 20 5c 6c 65 66 | 74 7c 5c 62 65 67 69 6e | \lef|t|\begin|
|00000930| 7b 61 72 72 61 79 7d 7b | 63 63 7d 6d 5f 32 26 6e |{array}{|cc}m_2&n|
|00000940| 5f 32 5c 5c 0d 6e 5f 32 | 26 6c 5f 32 5c 65 6e 64 |_2\\.n_2|&l_2\end|
|00000950| 7b 61 72 72 61 79 7d 5c | 72 69 67 68 74 7c 5e 32 |{array}\|right|^2|
|00000960| 7d 7d 0d 5c 65 6e 64 7b | 64 69 73 70 6c 61 79 6d |}}.\end{|displaym|
|00000970| 61 74 68 7d 0d 0d 5c 62 | 65 67 69 6e 7b 64 69 73 |ath}..\b|egin{dis|
|00000980| 70 6c 61 79 6d 61 74 68 | 7d 0d 5c 6d 62 6f 78 7b |playmath|}.\mbox{|
|00000990| 20 61 63 75 74 65 3d 7d | 5c 61 63 75 74 65 7b 61 | acute=}|\acute{a|
|000009a0| 7d 0d 5c 6d 62 6f 78 7b | 20 67 72 61 76 65 3d 7d |}.\mbox{| grave=}|
|000009b0| 5c 67 72 61 76 65 7b 61 | 7d 0d 5c 6d 62 6f 78 7b |\grave{a|}.\mbox{|
|000009c0| 20 64 64 6f 74 3d 7d 5c | 64 64 6f 74 20 7b 61 7d | ddot=}\|ddot {a}|
|000009d0| 0d 5c 6d 62 6f 78 7b 20 | 74 69 6c 64 65 3d 7d 5c |.\mbox{ |tilde=}\|
|000009e0| 74 69 6c 64 65 7b 61 7d | 0d 5c 6d 62 6f 78 7b 20 |tilde{a}|.\mbox{ |
|000009f0| 62 61 72 3d 7d 5c 62 61 | 72 20 20 7b 61 7d 0d 5c |bar=}\ba|r {a}.\|
|00000a00| 6d 62 6f 78 7b 20 62 72 | 65 76 65 3d 7d 5c 62 72 |mbox{ br|eve=}\br|
|00000a10| 65 76 65 7b 61 7d 0d 5c | 6d 62 6f 78 7b 20 63 68 |eve{a}.\|mbox{ ch|
|00000a20| 65 63 6b 3d 7d 5c 63 68 | 65 63 6b 7b 61 7d 0d 5c |eck=}\ch|eck{a}.\|
|00000a30| 6d 62 6f 78 7b 20 68 61 | 74 3d 7d 5c 68 61 74 20 |mbox{ ha|t=}\hat |
|00000a40| 20 7b 61 7d 0d 5c 6d 62 | 6f 78 7b 20 76 65 63 3d | {a}.\mb|ox{ vec=|
|00000a50| 7d 5c 76 65 63 20 20 7b | 61 7d 0d 5c 6d 62 6f 78 |}\vec {|a}.\mbox|
|00000a60| 7b 20 64 6f 74 3d 7d 5c | 64 6f 74 20 20 7b 61 7d |{ dot=}\|dot {a}|
|00000a70| 0d 5c 65 6e 64 7b 64 69 | 73 70 6c 61 79 6d 61 74 |.\end{di|splaymat|
|00000a80| 68 7d 0d 5c 65 6e 64 7b | 64 6f 63 75 6d 65 6e 74 |h}.\end{|document|
|00000a90| 7d 0d | |}. | |
+--------+-------------------------+-------------------------+--------+--------+