home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
You can browse this item here: svd.tex
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX document text
| default
| |
99%
| file
| LaTeX document, ASCII text, with CR line terminators
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| detectItEasy
| Format: plain text[CR]
| default (weak)
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [ttxt] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 73 65 63 74 69 6f 6e | 7b 73 76 64 20 2d 2d 2d |\section|{svd ---|
|00000010| 20 53 69 6e 67 75 6c 61 | 72 20 56 61 6c 75 65 20 | Singula|r Value |
|00000020| 44 65 63 6f 6d 70 6f 73 | 69 74 69 6f 6e 7d 0d 5c |Decompos|ition}.\|
|00000030| 6c 61 62 65 6c 7b 66 6e | 3a 73 76 64 7d 0d 5c 69 |label{fn|:svd}.\i|
|00000040| 6e 64 65 78 7b 73 76 64 | 28 29 7d 0d 5c 69 6e 64 |ndex{svd|()}.\ind|
|00000050| 65 78 7b 73 69 6e 67 75 | 6c 61 72 20 76 61 6c 75 |ex{singu|lar valu|
|00000060| 65 20 64 65 63 6f 6d 70 | 6f 73 69 74 69 6f 6e 7d |e decomp|osition}|
|00000070| 0d 5c 62 65 67 69 6e 7b | 72 61 69 6c 7d 0d 53 56 |.\begin{|rail}.SV|
|00000080| 44 20 3a 20 27 73 76 64 | 27 20 27 28 27 20 4d 61 |D : 'svd|' '(' Ma|
|00000090| 74 72 69 78 20 28 27 2c | 27 20 53 74 72 69 6e 67 |trix (',|' String|
|000000a0| 20 29 20 27 29 27 20 3b | 0d 5c 65 6e 64 7b 72 61 | ) ')' ;|.\end{ra|
|000000b0| 69 6c 7d 0d 0d 5c 76 65 | 72 62 2b 73 76 64 2b 20 |il}..\ve|rb+svd+ |
|000000c0| 63 61 6c 63 75 6c 61 74 | 65 73 20 74 68 65 20 73 |calculat|es the s|
|000000d0| 69 6e 67 75 6c 61 72 20 | 76 61 6c 75 65 73 2c 20 |ingular |values, |
|000000e0| 61 6e 64 20 64 69 66 66 | 65 72 65 6e 74 20 66 6f |and diff|erent fo|
|000000f0| 72 6d 73 20 6f 66 20 74 | 68 65 20 0d 6c 65 66 74 |rms of t|he .left|
|00000100| 20 61 6e 64 20 72 69 67 | 68 74 20 73 69 6e 67 75 | and rig|ht singu|
|00000110| 6c 61 72 20 76 65 63 74 | 6f 72 73 2e 20 54 68 65 |lar vect|ors. The|
|00000120| 0d 72 65 73 75 6c 74 20 | 69 73 20 72 65 74 75 72 |.result |is retur|
|00000130| 6e 65 64 20 61 73 20 74 | 68 72 65 65 20 65 6c 65 |ned as t|hree ele|
|00000140| 6d 65 6e 74 73 20 69 6e | 20 61 20 6c 69 73 74 2e |ments in| a list.|
|00000150| 20 49 66 20 77 65 20 61 | 72 65 20 70 65 72 66 6f | If we a|re perfo|
|00000160| 72 6d 69 6e 67 0d 73 69 | 6e 67 75 6c 61 72 20 76 |rming.si|ngular v|
|00000170| 61 6c 75 65 20 64 65 63 | 6f 6d 70 6f 73 69 74 69 |alue dec|ompositi|
|00000180| 6f 6e 20 6f 66 20 24 41 | 24 2c 20 74 68 65 6e 0d |on of $A|$, then.|
|00000190| 0d 5c 5b 20 41 20 3d 20 | 55 20 49 5c 73 69 67 6d |.\[ A = |U I\sigm|
|000001a0| 61 20 56 5e 7b 54 7d 20 | 5c 5d 0d 0d 77 68 65 72 |a V^{T} |\]..wher|
|000001b0| 65 20 24 55 24 20 69 73 | 20 74 68 65 20 72 69 67 |e $U$ is| the rig|
|000001c0| 68 74 20 73 69 6e 67 75 | 6c 61 72 20 76 65 63 74 |ht singu|lar vect|
|000001d0| 6f 72 2c 20 72 65 74 75 | 72 6e 65 64 20 69 6e 20 |or, retu|rned in |
|000001e0| 5c 76 65 72 62 2b 75 2b | 2c 20 24 5c 73 69 67 6d |\verb+u+|, $\sigm|
|000001f0| 61 24 0d 69 73 20 61 20 | 76 65 63 74 6f 72 20 6f |a$.is a |vector o|
|00000200| 66 20 73 69 6e 67 75 6c | 61 72 20 76 61 6c 75 65 |f singul|ar value|
|00000210| 73 2c 20 72 65 74 75 72 | 6e 65 64 20 69 6e 20 5c |s, retur|ned in \|
|00000220| 76 65 72 62 2b 73 69 67 | 6d 61 2b 2c 20 61 6e 64 |verb+sig|ma+, and|
|00000230| 20 24 56 5e 7b 54 7d 24 | 20 69 73 0d 74 68 65 20 | $V^{T}$| is.the |
|00000240| 6c 65 66 74 20 73 69 6e | 67 75 6c 61 72 20 76 61 |left sin|gular va|
|00000250| 6c 75 65 2c 20 72 65 74 | 75 72 6e 65 64 20 69 6e |lue, ret|urned in|
|00000260| 20 5c 76 65 72 62 2b 76 | 74 2b 2e 0d 0d 46 75 6c | \verb+v|t+...Ful|
|00000270| 6c 20 73 69 6e 67 75 6c | 61 72 20 76 61 6c 75 65 |l singul|ar value|
|00000280| 73 20 61 72 65 61 20 61 | 6c 77 61 79 73 20 72 65 |s area a|lways re|
|00000290| 74 75 72 6e 65 64 2e 20 | 20 48 6f 77 65 76 65 72 |turned. | However|
|000002a0| 20 74 68 65 20 66 6f 72 | 6d 20 6f 66 20 74 68 65 | the for|m of the|
|000002b0| 0d 6c 65 66 74 20 61 6e | 64 20 72 69 67 68 74 20 |.left an|d right |
|000002c0| 73 69 6e 67 75 6c 61 72 | 20 76 65 63 74 6f 72 73 |singular| vectors|
|000002d0| 20 69 73 20 64 65 70 65 | 6e 64 61 6e 74 20 6f 6e | is depe|ndant on|
|000002e0| 20 74 68 65 0d 76 61 6c | 75 65 20 6f 66 20 74 68 | the.val|ue of th|
|000002f0| 65 20 6f 70 74 69 6f 6e | 61 6c 20 73 74 72 69 6e |e option|al strin|
|00000300| 67 20 61 72 67 75 6d 65 | 6e 74 3a 0d 5c 62 65 67 |g argume|nt:.\beg|
|00000310| 69 6e 7b 64 65 73 63 72 | 69 70 74 69 6f 6e 7d 0d |in{descr|iption}.|
|00000320| 5c 69 74 65 6d 5b 22 41 | 22 20 6f 72 20 22 61 22 |\item["A|" or "a"|
|00000330| 5d 20 54 68 65 20 66 75 | 6c 6c 20 24 55 24 2c 20 |] The fu|ll $U$, |
|00000340| 61 6e 64 20 24 56 5e 7b | 54 7d 24 20 61 72 65 20 |and $V^{|T}$ are |
|00000350| 72 65 74 75 72 6e 65 64 | 0d 5c 69 74 65 6d 5b 22 |returned|.\item["|
|00000360| 53 22 20 6f 72 20 22 73 | 22 5d 20 41 20 6d 69 6e |S" or "s|"] A min|
|00000370| 69 6d 61 6c 20 76 65 72 | 73 69 6f 6e 20 6f 66 20 |imal ver|sion of |
|00000380| 24 55 24 2c 20 61 6e 64 | 20 24 56 5e 7b 54 7d 24 |$U$, and| $V^{T}$|
|00000390| 0d 61 72 65 20 72 65 74 | 75 72 6e 65 64 2e 20 54 |.are ret|urned. T|
|000003a0| 68 69 73 20 69 73 20 74 | 68 65 20 64 65 66 61 75 |his is t|he defau|
|000003b0| 6c 74 2e 0d 5c 69 74 65 | 6d 5b 22 4e 22 20 6f 72 |lt..\ite|m["N" or|
|000003c0| 20 22 6e 22 5d 20 24 55 | 24 20 61 6e 64 20 24 56 | "n"] $U|$ and $V|
|000003d0| 5e 7b 54 7d 24 20 61 72 | 65 20 6e 6f 74 20 63 6f |^{T}$ ar|e not co|
|000003e0| 6d 70 75 74 65 64 2c 20 | 65 6d 70 74 79 0d 5c 76 |mputed, |empty.\v|
|000003f0| 65 72 62 2b 75 2b 20 61 | 6e 64 20 5c 76 65 72 62 |erb+u+ a|nd \verb|
|00000400| 2b 76 74 2b 20 65 6c 65 | 6d 65 6e 74 73 20 61 72 |+vt+ ele|ments ar|
|00000410| 65 20 72 65 74 75 72 6e | 65 64 2e 20 0d 5c 65 6e |e return|ed. .\en|
|00000420| 64 7b 64 65 73 63 72 69 | 70 74 69 6f 6e 7d 0d 0d |d{descri|ption}..|
|00000430| 46 75 6c 6c 20 73 69 6e | 67 75 6c 61 72 20 76 65 |Full sin|gular ve|
|00000440| 63 74 6f 72 73 20 6d 65 | 61 6e 73 20 74 68 61 74 |ctors me|ans that|
|00000450| 20 74 68 65 20 6e 75 6c | 6c 2d 73 70 61 63 65 20 | the nul|l-space |
|00000460| 69 73 20 72 65 70 72 65 | 73 65 6e 74 65 64 20 69 |is repre|sented i|
|00000470| 6e 20 74 68 65 20 0d 73 | 69 6e 67 75 6c 61 72 20 |n the .s|ingular |
|00000480| 76 61 6c 75 65 73 2e 20 | 20 54 68 69 73 20 69 73 |values. | This is|
|00000490| 20 74 68 65 20 73 6c 6f | 77 65 73 74 20 6f 70 74 | the slo|west opt|
|000004a0| 69 6f 6e 2e 0d 4d 69 6e | 69 6d 61 6c 20 73 69 6e |ion..Min|imal sin|
|000004b0| 67 75 6c 61 72 20 76 65 | 63 74 6f 72 73 20 6d 65 |gular ve|ctors me|
|000004c0| 61 6e 73 20 74 68 61 74 | 20 73 75 66 66 69 63 69 |ans that| suffici|
|000004d0| 65 6e 74 20 24 55 24 20 | 61 6e 64 20 24 56 5e 7b |ent $U$ |and $V^{|
|000004e0| 54 7d 24 20 61 72 65 20 | 72 65 74 75 72 6e 65 64 |T}$ are |returned|
|000004f0| 20 0d 74 6f 20 72 65 70 | 72 6f 64 75 63 65 20 24 | .to rep|roduce $|
|00000500| 41 24 2e 20 20 49 6e 20 | 67 65 6e 65 72 61 6c 2c |A$. In |general,|
|00000510| 20 66 6f 72 20 61 6e 20 | 61 72 67 75 6d 65 6e 74 | for an |argument|
|00000520| 20 6f 66 20 64 69 6d 65 | 6e 73 69 6f 6e 73 20 24 | of dime|nsions $|
|00000530| 72 20 78 20 63 24 2c 20 | 74 68 65 6e 20 69 66 0d |r x c$, |then if.|
|00000540| 24 72 20 5c 67 65 20 63 | 20 24 2c 0d 20 0d 5c 62 |$r \ge c| $,. .\b|
|00000550| 65 67 69 6e 7b 74 61 62 | 75 6c 61 72 7d 7b 7c 7c |egin{tab|ular}{|||
|00000560| 63 7c 63 7c 63 7c 63 7c | 7c 7d 0d 5c 68 6c 69 6e |c|c|c|c|||}.\hlin|
|00000570| 65 0d 46 6f 72 6d 61 74 | 20 20 20 20 26 20 24 55 |e.Format| & $U|
|00000580| 24 20 20 20 20 20 20 20 | 20 20 26 20 24 5c 73 69 |$ | & $\si|
|00000590| 67 6d 61 24 20 20 20 20 | 26 20 24 56 5e 7b 54 7d |gma$ |& $V^{T}|
|000005a0| 24 20 20 20 20 20 20 20 | 20 5c 5c 0d 5c 68 6c 69 |$ | \\.\hli|
|000005b0| 6e 65 20 5c 68 6c 69 6e | 65 0d 46 75 6c 6c 20 20 |ne \hlin|e.Full |
|000005c0| 20 20 20 20 26 20 24 72 | 20 78 20 72 24 20 20 20 | & $r| x r$ |
|000005d0| 20 20 26 20 24 31 20 78 | 20 63 24 20 20 20 20 20 | & $1 x| c$ |
|000005e0| 26 20 24 63 20 78 20 63 | 24 20 20 20 20 20 20 20 |& $c x c|$ |
|000005f0| 20 5c 5c 20 5c 68 6c 69 | 6e 65 0d 4d 69 6e 69 6d | \\ \hli|ne.Minim|
|00000600| 61 6c 20 20 20 26 20 24 | 72 20 78 20 63 24 20 20 |al & $|r x c$ |
|00000610| 20 20 20 26 20 24 31 20 | 78 20 63 24 20 20 20 20 | & $1 |x c$ |
|00000620| 20 26 20 24 63 20 78 20 | 63 24 20 20 20 20 20 20 | & $c x |c$ |
|00000630| 20 20 5c 5c 20 5c 68 6c | 69 6e 65 20 0d 4e 69 6c | \\ \hl|ine .Nil|
|00000640| 20 20 20 20 20 20 20 26 | 20 24 30 20 78 20 30 24 | &| $0 x 0$|
|00000650| 20 20 20 20 20 26 20 24 | 31 20 78 20 63 24 20 20 | & $|1 x c$ |
|00000660| 20 20 20 26 20 24 30 20 | 78 20 30 24 20 20 20 20 | & $0 |x 0$ |
|00000670| 20 20 20 20 5c 5c 20 5c | 68 6c 69 6e 65 20 0d 5c | \\ \|hline .\|
|00000680| 65 6e 64 7b 74 61 62 75 | 6c 61 72 7d 0d 5c 76 73 |end{tabu|lar}.\vs|
|00000690| 70 61 63 65 7b 31 30 70 | 74 7d 0d 0d 5c 6e 6f 69 |pace{10p|t}..\noi|
|000006a0| 6e 64 65 6e 74 20 46 6f | 72 20 24 72 20 5c 6c 65 |ndent Fo|r $r \le|
|000006b0| 20 63 24 2c 20 74 68 65 | 6e 0d 0d 5c 62 65 67 69 | c$, the|n..\begi|
|000006c0| 6e 7b 74 61 62 75 6c 61 | 72 7d 7b 7c 7c 63 7c 63 |n{tabula|r}{||c|c|
|000006d0| 7c 63 7c 63 7c 7c 7d 0d | 5c 68 6c 69 6e 65 0d 46 ||c|c||}.|\hline.F|
|000006e0| 6f 72 6d 61 74 20 20 20 | 20 26 20 24 55 24 20 20 |ormat | & $U$ |
|000006f0| 20 20 20 20 20 20 20 26 | 20 24 5c 73 69 67 6d 61 | &| $\sigma|
|00000700| 24 20 20 20 20 26 20 24 | 56 5e 7b 54 7d 24 20 20 |$ & $|V^{T}$ |
|00000710| 20 20 20 20 20 20 5c 5c | 0d 5c 68 6c 69 6e 65 20 | \\|.\hline |
|00000720| 5c 68 6c 69 6e 65 0d 46 | 75 6c 6c 20 20 20 20 20 |\hline.F|ull |
|00000730| 20 26 20 24 72 20 78 20 | 72 24 20 20 20 20 20 26 | & $r x |r$ &|
|00000740| 20 24 31 20 78 20 72 24 | 20 20 20 20 20 26 20 24 | $1 x r$| & $|
|00000750| 63 20 78 20 63 24 20 20 | 20 20 20 20 20 20 5c 5c |c x c$ | \\|
|00000760| 20 5c 68 6c 69 6e 65 0d | 4d 69 6e 69 6d 61 6c 20 | \hline.|Minimal |
|00000770| 20 20 26 20 24 72 20 78 | 20 72 24 20 20 20 20 20 | & $r x| r$ |
|00000780| 26 20 24 31 20 78 20 72 | 24 20 20 20 20 20 26 20 |& $1 x r|$ & |
|00000790| 24 72 20 78 20 63 24 20 | 20 20 20 20 20 20 20 5c |$r x c$ | \|
|000007a0| 5c 20 5c 68 6c 69 6e 65 | 20 0d 4e 69 6c 20 20 20 |\ \hline| .Nil |
|000007b0| 20 20 20 20 26 20 24 30 | 20 78 20 30 24 20 20 20 | & $0| x 0$ |
|000007c0| 20 20 26 20 24 31 20 78 | 20 72 24 20 20 20 20 20 | & $1 x| r$ |
|000007d0| 26 20 24 30 20 78 20 30 | 24 20 20 20 20 20 20 20 |& $0 x 0|$ |
|000007e0| 20 5c 5c 20 5c 68 6c 69 | 6e 65 20 0d 5c 65 6e 64 | \\ \hli|ne .\end|
|000007f0| 7b 74 61 62 75 6c 61 72 | 7d 0d 0d 5c 70 61 72 61 |{tabular|}..\para|
|00000800| 67 72 61 70 68 7b 45 78 | 61 6d 70 6c 65 7d 0d 5c |graph{Ex|ample}.\|
|00000810| 69 6e 64 65 78 7b 65 78 | 61 6d 70 6c 65 20 6f 66 |index{ex|ample of|
|00000820| 20 73 76 64 28 29 7d 0d | 5c 69 6e 64 65 78 7b 73 | svd()}.|\index{s|
|00000830| 76 64 28 29 21 65 78 61 | 6d 70 6c 65 7d 0d 5c 62 |vd()!exa|mple}.\b|
|00000840| 65 67 69 6e 7b 76 65 72 | 62 61 74 69 6d 7d 0d 3e |egin{ver|batim}.>|
|00000850| 20 41 20 3d 20 5b 30 2e | 39 36 2c 20 31 2e 37 32 | A = [0.|96, 1.72|
|00000860| 3b 20 32 2e 32 38 2c 20 | 30 2e 39 36 5d 3b 0d 3e |; 2.28, |0.96];.>|
|00000870| 20 41 73 76 64 20 3d 20 | 73 76 64 28 41 29 0d 20 | Asvd = |svd(A). |
|00000880| 20 20 73 69 67 6d 61 20 | 20 20 20 20 20 20 20 75 | sigma | u|
|00000890| 20 20 20 20 20 20 20 20 | 20 20 20 20 76 74 0d 3e | | vt.>|
|000008a0| 20 41 73 76 64 2e 76 74 | 0d 20 6d 61 74 72 69 78 | Asvd.vt|. matrix|
|000008b0| 20 63 6f 6c 75 6d 6e 73 | 20 31 20 74 68 72 75 20 | columns| 1 thru |
|000008c0| 32 0d 20 20 20 20 20 20 | 20 20 2d 30 2e 38 20 20 |2. | -0.8 |
|000008d0| 20 20 20 20 20 20 2d 30 | 2e 36 0d 20 20 20 20 20 | -0|.6. |
|000008e0| 20 20 20 20 30 2e 36 20 | 20 20 20 20 20 20 20 2d | 0.6 | -|
|000008f0| 30 2e 38 0d 3e 20 41 73 | 76 64 2e 75 0d 20 6d 61 |0.8.> As|vd.u. ma|
|00000900| 74 72 69 78 20 63 6f 6c | 75 6d 6e 73 20 31 20 74 |trix col|umns 1 t|
|00000910| 68 72 75 20 32 0d 20 20 | 20 20 20 20 20 20 2d 30 |hru 2. | -0|
|00000920| 2e 36 20 20 20 20 20 20 | 20 20 2d 30 2e 38 0d 20 |.6 | -0.8. |
|00000930| 20 20 20 20 20 20 20 2d | 30 2e 38 20 20 20 20 20 | -|0.8 |
|00000940| 20 20 20 20 30 2e 36 0d | 3e 20 41 73 76 64 2e 73 | 0.6.|> Asvd.s|
|00000950| 69 67 6d 61 0d 20 76 65 | 63 74 6f 72 20 65 6c 65 |igma. ve|ctor ele|
|00000960| 6d 65 6e 74 73 20 31 20 | 74 68 72 75 20 32 0d 20 |ments 1 |thru 2. |
|00000970| 20 20 20 20 20 20 20 20 | 20 20 33 20 20 20 20 20 | | 3 |
|00000980| 20 20 20 20 20 20 31 0d | 3e 20 63 68 65 63 6b 20 | 1.|> check |
|00000990| 3d 20 41 73 76 64 2e 75 | 20 2a 20 64 69 61 67 28 |= Asvd.u| * diag(|
|000009a0| 41 73 76 64 2e 73 69 67 | 6d 61 29 20 2a 20 41 73 |Asvd.sig|ma) * As|
|000009b0| 76 64 2e 76 74 0d 20 63 | 68 65 63 6b 20 3d 0d 20 |vd.vt. c|heck =. |
|000009c0| 6d 61 74 72 69 78 20 63 | 6f 6c 75 6d 6e 73 20 31 |matrix c|olumns 1|
|000009d0| 20 74 68 72 75 20 32 0d | 20 20 20 20 20 20 20 20 | thru 2.| |
|000009e0| 30 2e 39 36 20 20 20 20 | 20 20 20 20 31 2e 37 32 |0.96 | 1.72|
|000009f0| 0d 20 20 20 20 20 20 20 | 20 32 2e 32 38 20 20 20 |. | 2.28 |
|00000a00| 20 20 20 20 20 30 2e 39 | 36 0d 3e 20 61 20 3d 20 | 0.9|6.> a = |
|00000a10| 72 61 6e 64 28 31 30 30 | 2c 32 30 29 3b 0d 3e 20 |rand(100|,20);.> |
|00000a20| 62 20 3d 20 73 76 64 28 | 61 29 0d 20 62 20 3d 0d |b = svd(|a). b =.|
|00000a30| 20 20 20 73 69 67 6d 61 | 20 20 20 20 20 20 20 20 | sigma| |
|00000a40| 75 20 20 20 20 20 20 20 | 20 20 20 20 20 76 74 20 |u | vt |
|00000a50| 20 20 20 20 20 20 20 20 | 20 20 0d 3e 20 77 68 6f | | .> who|
|00000a60| 73 28 62 29 0d 20 20 20 | 20 20 20 20 20 4e 61 6d |s(b). | Nam|
|00000a70| 65 20 20 20 20 20 20 20 | 20 20 20 20 20 43 6c 61 |e | Cla|
|00000a80| 73 73 20 20 20 54 79 70 | 65 20 20 20 20 53 69 7a |ss Typ|e Siz|
|00000a90| 65 20 20 20 20 20 20 20 | 20 20 20 20 20 4e 42 79 |e | NBy|
|00000aa0| 74 65 73 0d 20 20 20 20 | 20 20 20 20 73 69 67 6d |tes. | sigm|
|00000ab0| 61 20 20 20 20 20 20 20 | 20 20 20 20 6e 75 6d 20 |a | num |
|00000ac0| 20 20 20 20 72 65 61 6c | 20 20 20 20 31 20 20 20 | real| 1 |
|00000ad0| 20 20 20 20 32 30 20 20 | 20 20 20 20 31 36 30 0d | 20 | 160.|
|00000ae0| 20 20 20 20 20 20 20 20 | 75 20 20 20 20 20 20 20 | |u |
|00000af0| 20 20 20 20 20 20 20 20 | 6e 75 6d 20 20 20 20 20 | |num |
|00000b00| 72 65 61 6c 20 20 20 20 | 31 30 30 20 20 20 20 20 |real |100 |
|00000b10| 32 30 20 20 20 20 20 20 | 31 36 30 30 30 0d 20 20 |20 |16000. |
|00000b20| 20 20 20 20 20 20 76 74 | 20 20 20 20 20 20 20 20 | vt| |
|00000b30| 20 20 20 20 20 20 6e 75 | 6d 20 20 20 20 20 72 65 | nu|m re|
|00000b40| 61 6c 20 20 20 20 32 30 | 20 20 20 20 20 20 32 30 |al 20| 20|
|00000b50| 20 20 20 20 20 20 33 32 | 30 30 0d 54 6f 74 61 6c | 32|00.Total|
|00000b60| 20 4d 42 79 74 65 73 20 | 3d 20 30 2e 30 31 39 33 | MBytes |= 0.0193|
|00000b70| 36 30 0d 20 20 20 20 20 | 20 20 20 30 0d 3e 20 63 |60. | 0.> c|
|00000b80| 20 3d 20 73 76 64 28 61 | 2c 22 41 22 29 0d 20 63 | = svd(a|,"A"). c|
|00000b90| 20 3d 0d 20 20 20 73 69 | 67 6d 61 20 20 20 20 20 | =. si|gma |
|00000ba0| 20 20 20 75 20 20 20 20 | 20 20 20 20 20 20 20 20 | u | |
|00000bb0| 76 74 20 20 20 20 20 20 | 20 20 20 20 20 0d 3e 20 |vt | .> |
|00000bc0| 77 68 6f 73 28 63 29 0d | 20 20 20 20 20 20 20 20 |whos(c).| |
|00000bd0| 4e 61 6d 65 20 20 20 20 | 20 20 20 20 20 20 20 20 |Name | |
|00000be0| 43 6c 61 73 73 20 20 20 | 54 79 70 65 20 20 20 20 |Class |Type |
|00000bf0| 53 69 7a 65 20 20 20 20 | 20 20 20 20 20 20 20 20 |Size | |
|00000c00| 4e 42 79 74 65 73 0d 20 | 20 20 20 20 20 20 20 73 |NBytes. | s|
|00000c10| 69 67 6d 61 20 20 20 20 | 20 20 20 20 20 20 20 6e |igma | n|
|00000c20| 75 6d 20 20 20 20 20 72 | 65 61 6c 20 20 20 20 31 |um r|eal 1|
|00000c30| 20 20 20 20 20 20 20 32 | 30 20 20 20 20 20 20 31 | 2|0 1|
|00000c40| 36 30 0d 20 20 20 20 20 | 20 20 20 75 20 20 20 20 |60. | u |
|00000c50| 20 20 20 20 20 20 20 20 | 20 20 20 6e 75 6d 20 20 | | num |
|00000c60| 20 20 20 72 65 61 6c 20 | 20 20 20 31 30 30 20 20 | real | 100 |
|00000c70| 20 20 20 31 30 30 20 20 | 20 20 20 38 30 30 30 30 | 100 | 80000|
|00000c80| 0d 20 20 20 20 20 20 20 | 20 76 74 20 20 20 20 20 |. | vt |
|00000c90| 20 20 20 20 20 20 20 20 | 20 6e 75 6d 20 20 20 20 | | num |
|00000ca0| 20 72 65 61 6c 20 20 20 | 20 32 30 20 20 20 20 20 | real | 20 |
|00000cb0| 20 32 30 20 20 20 20 20 | 20 33 32 30 30 0d 54 6f | 20 | 3200.To|
|00000cc0| 74 61 6c 20 4d 42 79 74 | 65 73 20 3d 20 30 2e 30 |tal MByt|es = 0.0|
|00000cd0| 38 33 33 36 30 0d 20 20 | 20 20 20 20 20 20 30 0d |83360. | 0.|
|00000ce0| 3e 20 64 20 3d 20 73 76 | 64 28 61 2c 22 4e 22 29 |> d = sv|d(a,"N")|
|00000cf0| 0d 20 64 20 3d 0d 20 20 | 20 73 69 67 6d 61 20 20 |. d =. | sigma |
|00000d00| 20 20 20 20 20 20 75 20 | 20 20 20 20 20 20 20 20 | u | |
|00000d10| 20 20 20 76 74 20 20 20 | 20 20 20 20 20 20 20 20 | vt | |
|00000d20| 0d 3e 20 77 68 6f 73 28 | 64 29 0d 20 20 20 20 20 |.> whos(|d). |
|00000d30| 20 20 20 4e 61 6d 65 20 | 20 20 20 20 20 20 20 20 | Name | |
|00000d40| 20 20 20 43 6c 61 73 73 | 20 20 20 54 79 70 65 20 | Class| Type |
|00000d50| 20 20 20 53 69 7a 65 20 | 20 20 20 20 20 20 20 20 | Size | |
|00000d60| 20 20 20 4e 42 79 74 65 | 73 0d 20 20 20 20 20 20 | NByte|s. |
|00000d70| 20 20 73 69 67 6d 61 20 | 20 20 20 20 20 20 20 20 | sigma | |
|00000d80| 20 20 6e 75 6d 20 20 20 | 20 20 72 65 61 6c 20 20 | num | real |
|00000d90| 20 20 31 20 20 20 20 20 | 20 20 32 30 20 20 20 20 | 1 | 20 |
|00000da0| 20 20 31 36 30 0d 20 20 | 20 20 20 20 20 20 75 20 | 160. | u |
|00000db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 6e 75 | | nu|
|00000dc0| 6d 20 20 20 20 20 72 65 | 61 6c 20 20 20 20 30 20 |m re|al 0 |
|00000dd0| 20 20 20 20 20 20 30 20 | 20 20 20 20 20 20 30 0d | 0 | 0.|
|00000de0| 20 20 20 20 20 20 20 20 | 76 74 20 20 20 20 20 20 | |vt |
|00000df0| 20 20 20 20 20 20 20 20 | 6e 75 6d 20 20 20 20 20 | |num |
|00000e00| 72 65 61 6c 20 20 20 20 | 30 20 20 20 20 20 20 20 |real |0 |
|00000e10| 30 20 20 20 20 20 20 20 | 30 0d 54 6f 74 61 6c 20 |0 |0.Total |
|00000e20| 4d 42 79 74 65 73 20 3d | 20 30 2e 30 30 30 31 36 |MBytes =| 0.00016|
|00000e30| 30 0d 20 20 20 20 20 20 | 20 20 30 0d 5c 65 6e 64 |0. | 0.\end|
|00000e40| 7b 76 65 72 62 61 74 69 | 6d 7d 0d 0d 5c 6e 65 77 |{verbati|m}..\new|
|00000e50| 70 61 67 65 0d 0d 0d 0d | |page....| |
+--------+-------------------------+-------------------------+--------+--------+