home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
You can browse this item here: manual.ind
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
100%
| dexvert
| File List (text/fileList)
| magic
| Supported |
1%
| dexvert
| Adobe InDesign Document (document/adobeInDesignDocument)
| ext
| Unsupported |
1%
| dexvert
| CA Visual Objects ADAM Index (other/caVisualObjectsADAMIndex)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| data
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| detectItEasy
| Format: plain text[CR]
| default (weak)
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [ttxt] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 62 65 67 69 6e 7b 74 | 68 65 69 6e 64 65 78 7d |\begin{t|heindex}|
|00000010| 0d 0d 20 20 5c 69 74 65 | 6d 20 24 5c 63 61 6c 20 |.. \ite|m $\cal |
|00000020| 46 24 20 64 69 73 74 72 | 69 62 75 74 69 6f 6e 2c |F$ distr|ibution,|
|00000030| 20 31 37 38 0d 20 20 5c | 69 74 65 6d 20 24 5c 63 | 178. \|item $\c|
|00000040| 68 69 5e 7b 32 7d 24 20 | 64 69 73 74 72 69 62 75 |hi^{2}$ |distribu|
|00000050| 74 69 6f 6e 2c 20 31 37 | 38 0d 20 20 5c 69 74 65 |tion, 17|8. \ite|
|00000060| 6d 20 24 5c 69 6e 66 74 | 79 24 2c 20 31 31 34 0d |m $\inft|y$, 114.|
|00000070| 20 20 5c 69 74 65 6d 20 | 31 2d 6e 6f 72 6d 2c 20 | \item |1-norm, |
|00000080| 31 34 32 0d 20 20 5c 69 | 74 65 6d 20 32 2d 6e 6f |142. \i|tem 2-no|
|00000090| 72 6d 2c 20 31 34 32 0d | 0d 20 20 5c 69 6e 64 65 |rm, 142.|. \inde|
|000000a0| 78 73 70 61 63 65 0d 0d | 20 20 5c 69 74 65 6d 20 |xspace..| \item |
|000000b0| 61 62 73 28 29 2c 20 34 | 38 0d 20 20 20 20 5c 73 |abs(), 4|8. \s|
|000000c0| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|000000d0| 34 38 0d 20 20 5c 69 74 | 65 6d 20 61 62 73 6f 6c |48. \it|em absol|
|000000e0| 75 74 65 20 76 61 6c 75 | 65 2c 20 34 38 0d 20 20 |ute valu|e, 48. |
|000000f0| 5c 69 74 65 6d 20 61 63 | 63 65 73 73 20 6f 70 65 |\item ac|cess ope|
|00000100| 72 61 74 69 6e 67 20 73 | 79 73 74 65 6d 2c 20 32 |rating s|ystem, 2|
|00000110| 31 38 0d 20 20 5c 69 74 | 65 6d 20 61 63 6f 73 28 |18. \it|em acos(|
|00000120| 29 2c 20 34 39 0d 20 20 | 20 20 5c 73 75 62 69 74 |), 49. | \subit|
|00000130| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 34 39 0d 20 |em examp|le, 49. |
|00000140| 20 5c 69 74 65 6d 20 61 | 63 6f 73 68 28 29 2c 20 | \item a|cosh(), |
|00000150| 35 30 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |50. \|subitem |
|00000160| 65 78 61 6d 70 6c 65 2c | 20 35 30 0d 20 20 5c 69 |example,| 50. \i|
|00000170| 74 65 6d 20 61 6c 6c 28 | 29 2c 20 35 31 0d 20 20 |tem all(|), 51. |
|00000180| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00000190| 6c 65 2c 20 35 31 0d 20 | 20 5c 69 74 65 6d 20 61 |le, 51. | \item a|
|000001a0| 6e 79 28 29 2c 20 35 32 | 0d 20 20 20 20 5c 73 75 |ny(), 52|. \su|
|000001b0| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 35 |bitem ex|ample, 5|
|000001c0| 32 0d 20 20 5c 69 74 65 | 6d 20 61 72 63 20 63 6f |2. \ite|m arc co|
|000001d0| 73 69 6e 65 2c 20 34 39 | 0d 20 20 5c 69 74 65 6d |sine, 49|. \item|
|000001e0| 20 61 72 63 20 73 69 6e | 65 2c 20 35 33 0d 20 20 | arc sin|e, 53. |
|000001f0| 5c 69 74 65 6d 20 61 72 | 63 20 74 61 6e 67 65 6e |\item ar|c tangen|
|00000200| 74 2c 20 35 35 0d 20 20 | 5c 69 74 65 6d 20 61 72 |t, 55. |\item ar|
|00000210| 63 20 74 61 6e 67 65 6e | 74 20 6f 66 20 72 61 74 |c tangen|t of rat|
|00000220| 69 6f 2c 20 35 36 0d 20 | 20 5c 69 74 65 6d 20 61 |io, 56. | \item a|
|00000230| 72 67 75 6d 65 6e 74 0d | 20 20 20 20 5c 73 75 62 |rgument.| \sub|
|00000240| 69 74 65 6d 20 74 65 73 | 74 69 6e 67 20 66 6f 72 |item tes|ting for|
|00000250| 2c 20 38 39 0d 20 20 5c | 69 74 65 6d 20 61 73 69 |, 89. \|item asi|
|00000260| 6e 28 29 2c 20 35 33 0d | 20 20 20 20 5c 73 75 62 |n(), 53.| \sub|
|00000270| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 35 33 |item exa|mple, 53|
|00000280| 0d 20 20 5c 69 74 65 6d | 20 61 73 69 6e 68 28 29 |. \item| asinh()|
|00000290| 2c 20 35 34 0d 20 20 20 | 20 5c 73 75 62 69 74 65 |, 54. | \subite|
|000002a0| 6d 20 65 78 61 6d 70 6c | 65 2c 20 35 34 0d 20 20 |m exampl|e, 54. |
|000002b0| 5c 69 74 65 6d 20 61 74 | 61 6e 28 29 2c 20 35 35 |\item at|an(), 55|
|000002c0| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|000002d0| 61 6d 70 6c 65 2c 20 35 | 35 0d 20 20 5c 69 74 65 |ample, 5|5. \ite|
|000002e0| 6d 20 61 74 61 6e 32 28 | 29 2c 20 35 36 0d 20 20 |m atan2(|), 56. |
|000002f0| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00000300| 6c 65 2c 20 35 36 0d 20 | 20 5c 69 74 65 6d 20 61 |le, 56. | \item a|
|00000310| 74 61 6e 68 28 29 2c 20 | 35 37 0d 20 20 20 20 5c |tanh(), |57. \|
|00000320| 73 75 62 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 2c |subitem |example,|
|00000330| 20 35 37 0d 20 20 5c 69 | 74 65 6d 20 61 74 74 72 | 57. \i|tem attr|
|00000340| 69 62 75 74 65 73 20 6f | 66 20 61 20 6d 61 74 72 |ibutes o|f a matr|
|00000350| 69 78 2c 20 31 34 0d 20 | 20 5c 69 74 65 6d 20 61 |ix, 14. | \item a|
|00000360| 76 65 72 61 67 65 20 76 | 61 6c 75 65 2c 20 31 33 |verage v|alue, 13|
|00000370| 36 0d 0d 20 20 5c 69 6e | 64 65 78 73 70 61 63 65 |6.. \in|dexspace|
|00000380| 0d 0d 20 20 5c 69 74 65 | 6d 20 62 61 63 6b 73 75 |.. \ite|m backsu|
|00000390| 62 28 29 2c 20 35 38 0d | 20 20 20 20 5c 73 75 62 |b(), 58.| \sub|
|000003a0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 35 38 |item exa|mple, 58|
|000003b0| 0d 20 20 5c 69 74 65 6d | 20 62 61 6c 61 6e 63 65 |. \item| balance|
|000003c0| 28 29 2c 20 36 30 0d 20 | 20 20 20 5c 73 75 62 69 |(), 60. | \subi|
|000003d0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 36 30 0d |tem exam|ple, 60.|
|000003e0| 20 20 5c 69 74 65 6d 20 | 62 61 73 65 20 31 30 20 | \item |base 10 |
|000003f0| 6c 6f 67 61 72 69 74 68 | 6d 2c 20 31 32 38 0d 20 |logarith|m, 128. |
|00000400| 20 5c 69 74 65 6d 20 62 | 65 74 61 20 64 69 73 74 | \item b|eta dist|
|00000410| 72 69 62 75 74 69 6f 6e | 2c 20 31 37 38 0d 20 20 |ribution|, 178. |
|00000420| 5c 69 74 65 6d 20 62 69 | 6e 61 72 79 20 64 61 74 |\item bi|nary dat|
|00000430| 61 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 6f |a. \s|ubitem o|
|00000440| 75 74 70 75 74 2c 20 32 | 33 35 0d 20 20 20 20 5c |utput, 2|35. \|
|00000450| 73 75 62 69 74 65 6d 20 | 72 65 61 64 69 6e 67 20 |subitem |reading |
|00000460| 66 72 6f 6d 20 61 20 66 | 69 6c 65 2c 20 31 38 33 |from a f|ile, 183|
|00000470| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 73 61 |. \su|bitem sa|
|00000480| 76 69 6e 67 20 69 6e 20 | 61 20 66 69 6c 65 2c 20 |ving in |a file, |
|00000490| 32 33 35 0d 20 20 5c 69 | 74 65 6d 20 62 69 6e 6f |235. \i|tem bino|
|000004a0| 6d 69 61 6c 20 64 69 73 | 74 72 69 62 75 74 69 6f |mial dis|tributio|
|000004b0| 6e 2c 20 31 37 38 0d 0d | 20 20 5c 69 6e 64 65 78 |n, 178..| \index|
|000004c0| 73 70 61 63 65 0d 0d 20 | 20 5c 69 74 65 6d 20 63 |space.. | \item c|
|000004d0| 64 28 29 2c 20 36 31 0d | 20 20 20 20 5c 73 75 62 |d(), 61.| \sub|
|000004e0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 36 31 |item exa|mple, 61|
|000004f0| 0d 20 20 5c 69 74 65 6d | 20 63 65 69 6c 28 29 2c |. \item| ceil(),|
|00000500| 20 36 32 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d | 62. |\subitem|
|00000510| 20 65 78 61 6d 70 6c 65 | 2c 20 36 32 0d 20 20 5c | example|, 62. \|
|00000520| 69 74 65 6d 20 63 65 69 | 6c 69 6e 67 20 76 61 6c |item cei|ling val|
|00000530| 75 65 2c 20 36 32 0d 20 | 20 5c 69 74 65 6d 20 63 |ue, 62. | \item c|
|00000540| 68 61 6e 67 65 20 64 69 | 72 65 63 74 6f 72 79 2c |hange di|rectory,|
|00000550| 20 36 31 0d 20 20 5c 69 | 74 65 6d 20 63 68 61 6e | 61. \i|tem chan|
|00000560| 67 69 6e 67 20 6f 75 74 | 70 75 74 20 66 6f 72 6d |ging out|put form|
|00000570| 61 74 2c 20 31 30 31 0d | 20 20 5c 69 74 65 6d 20 |at, 101.| \item |
|00000580| 63 68 61 72 61 63 74 65 | 72 20 73 74 72 69 6e 67 |characte|r string|
|00000590| 73 2c 20 32 31 0d 20 20 | 5c 69 74 65 6d 20 24 5c |s, 21. |\item $\|
|000005a0| 63 68 69 5e 7b 32 7d 24 | 20 64 69 73 74 72 69 62 |chi^{2}$| distrib|
|000005b0| 75 74 69 6f 6e 2c 20 31 | 37 38 0d 20 20 5c 69 74 |ution, 1|78. \it|
|000005c0| 65 6d 20 63 68 6f 6c 28 | 29 2c 20 36 33 0d 20 20 |em chol(|), 63. |
|000005d0| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|000005e0| 6c 65 2c 20 36 33 0d 20 | 20 5c 69 74 65 6d 20 63 |le, 63. | \item c|
|000005f0| 68 6f 6c 65 73 6b 79 20 | 66 61 63 74 6f 72 69 73 |holesky |factoris|
|00000600| 61 74 69 6f 6e 2c 20 36 | 33 0d 20 20 5c 69 74 65 |ation, 6|3. \ite|
|00000610| 6d 20 63 6c 61 73 73 28 | 29 2c 20 36 35 0d 20 20 |m class(|), 65. |
|00000620| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00000630| 6c 65 2c 20 36 35 0d 20 | 20 5c 69 74 65 6d 20 63 |le, 65. | \item c|
|00000640| 6c 65 61 72 20 76 61 72 | 69 61 62 6c 65 20 6f 72 |lear var|iable or|
|00000650| 20 66 75 6e 63 74 69 6f | 6e 2c 20 36 36 0d 20 20 | functio|n, 66. |
|00000660| 5c 69 74 65 6d 20 63 6c | 65 61 72 20 77 6f 72 6b |\item cl|ear work|
|00000670| 73 70 61 63 65 2c 20 36 | 37 0d 20 20 5c 69 74 65 |space, 6|7. \ite|
|00000680| 6d 20 63 6c 65 61 72 28 | 29 2c 20 36 36 0d 20 20 |m clear(|), 66. |
|00000690| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|000006a0| 6c 65 2c 20 36 36 0d 20 | 20 5c 69 74 65 6d 20 63 |le, 66. | \item c|
|000006b0| 6c 65 61 72 61 6c 6c 28 | 29 2c 20 36 37 0d 20 20 |learall(|), 67. |
|000006c0| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|000006d0| 6c 65 2c 20 36 37 0d 20 | 20 5c 69 74 65 6d 20 63 |le, 67. | \item c|
|000006e0| 6c 6f 73 65 20 61 20 66 | 69 6c 65 2c 20 36 38 0d |lose a f|ile, 68.|
|000006f0| 20 20 5c 69 74 65 6d 20 | 63 6c 6f 73 65 20 61 6c | \item |close al|
|00000700| 6c 20 70 6c 6f 74 20 77 | 69 6e 64 6f 77 73 2c 20 |l plot w|indows, |
|00000710| 31 35 30 0d 20 20 5c 69 | 74 65 6d 20 63 6c 6f 73 |150. \i|tem clos|
|00000720| 65 20 70 6c 6f 74 20 77 | 69 6e 64 6f 77 2c 20 31 |e plot w|indow, 1|
|00000730| 34 39 0d 20 20 5c 69 74 | 65 6d 20 63 6c 6f 73 65 |49. \it|em close|
|00000740| 28 29 2c 20 36 38 0d 20 | 20 20 20 5c 73 75 62 69 |(), 68. | \subi|
|00000750| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 36 38 0d |tem exam|ple, 68.|
|00000760| 20 20 5c 69 74 65 6d 20 | 63 6f 6d 6d 61 6e 64 20 | \item |command |
|00000770| 6c 69 6e 65 20 6f 70 74 | 69 6f 6e 73 2c 20 34 0d |line opt|ions, 4.|
|00000780| 20 20 5c 69 74 65 6d 20 | 63 6f 6d 70 61 6e 28 29 | \item |compan()|
|00000790| 2c 20 36 39 0d 20 20 20 | 20 5c 73 75 62 69 74 65 |, 69. | \subite|
|000007a0| 6d 20 65 78 61 6d 70 6c | 65 2c 20 36 39 0d 20 20 |m exampl|e, 69. |
|000007b0| 5c 69 74 65 6d 20 63 6f | 6d 70 61 6e 69 6f 6e 20 |\item co|mpanion |
|000007c0| 6d 61 74 72 69 78 2c 20 | 36 39 0d 20 20 5c 69 74 |matrix, |69. \it|
|000007d0| 65 6d 20 63 6f 6d 70 6c | 65 6d 65 6e 74 20 6f 66 |em compl|ement of|
|000007e0| 20 61 20 73 65 74 2c 20 | 37 30 0d 20 20 5c 69 74 | a set, |70. \it|
|000007f0| 65 6d 20 63 6f 6d 70 6c | 65 6d 65 6e 74 28 29 2c |em compl|ement(),|
|00000800| 20 37 30 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d | 70. |\subitem|
|00000810| 20 65 78 61 6d 70 6c 65 | 2c 20 37 30 0d 20 20 5c | example|, 70. \|
|00000820| 69 74 65 6d 20 63 6f 6d | 70 6c 65 78 20 63 6f 6e |item com|plex con|
|00000830| 6a 75 67 61 74 65 2c 20 | 37 31 0d 20 20 5c 69 74 |jugate, |71. \it|
|00000840| 65 6d 20 63 6f 6d 70 6c | 65 78 20 6e 75 6d 62 65 |em compl|ex numbe|
|00000850| 72 73 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |rs. \|subitem |
|00000860| 72 65 61 6c 20 70 61 72 | 74 2c 20 31 38 35 0d 20 |real par|t, 185. |
|00000870| 20 5c 69 74 65 6d 20 63 | 6f 6e 64 69 74 69 6f 6e | \item c|ondition|
|00000880| 20 6e 75 6d 62 65 72 2c | 20 31 38 31 0d 20 20 5c | number,| 181. \|
|00000890| 69 74 65 6d 20 63 6f 6e | 6a 28 29 2c 20 37 31 0d |item con|j(), 71.|
|000008a0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|000008b0| 6d 70 6c 65 2c 20 37 31 | 0d 20 20 5c 69 74 65 6d |mple, 71|. \item|
|000008c0| 20 63 6f 6e 76 65 72 74 | 20 74 6f 20 6d 61 74 72 | convert| to matr|
|000008d0| 69 78 2c 20 31 33 33 0d | 20 20 5c 69 74 65 6d 20 |ix, 133.| \item |
|000008e0| 63 6f 73 28 29 2c 20 37 | 32 0d 20 20 20 20 5c 73 |cos(), 7|2. \s|
|000008f0| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00000900| 37 32 0d 20 20 5c 69 74 | 65 6d 20 63 6f 73 68 28 |72. \it|em cosh(|
|00000910| 29 2c 20 37 33 0d 20 20 | 20 20 5c 73 75 62 69 74 |), 73. | \subit|
|00000920| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 37 33 0d 20 |em examp|le, 73. |
|00000930| 20 5c 69 74 65 6d 20 63 | 6f 73 69 6e 65 2c 20 37 | \item c|osine, 7|
|00000940| 32 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 68 |2. \s|ubitem h|
|00000950| 79 70 65 72 62 6f 6c 69 | 63 2c 20 37 33 0d 20 20 |yperboli|c, 73. |
|00000960| 20 20 5c 73 75 62 69 74 | 65 6d 20 69 6e 76 65 72 | \subit|em inver|
|00000970| 73 65 2c 20 34 39 0d 20 | 20 5c 69 74 65 6d 20 63 |se, 49. | \item c|
|00000980| 72 65 61 74 65 20 66 6f | 72 6d 61 74 74 65 64 20 |reate fo|rmatted |
|00000990| 73 74 72 69 6e 67 2c 20 | 32 30 36 0d 20 20 5c 69 |string, |206. \i|
|000009a0| 74 65 6d 20 63 72 65 61 | 74 69 6e 67 20 70 6c 6f |tem crea|ting plo|
|000009b0| 74 20 77 69 6e 64 6f 77 | 73 2c 20 31 37 34 0d 20 |t window|s, 174. |
|000009c0| 20 5c 69 74 65 6d 20 63 | 72 6f 73 73 0d 20 20 20 | \item c|ross. |
|000009d0| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|000009e0| 65 2c 20 37 34 0d 20 20 | 5c 69 74 65 6d 20 63 72 |e, 74. |\item cr|
|000009f0| 6f 73 73 28 29 2c 20 37 | 34 0d 20 20 5c 69 74 65 |oss(), 7|4. \ite|
|00000a00| 6d 20 63 75 6d 70 72 6f | 64 28 29 2c 20 37 35 0d |m cumpro|d(), 75.|
|00000a10| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00000a20| 6d 70 6c 65 2c 20 37 35 | 0d 20 20 5c 69 74 65 6d |mple, 75|. \item|
|00000a30| 20 63 75 6d 73 75 6d 28 | 29 2c 20 37 36 0d 20 20 | cumsum(|), 76. |
|00000a40| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00000a50| 6c 65 2c 20 37 36 0d 20 | 20 5c 69 74 65 6d 20 63 |le, 76. | \item c|
|00000a60| 75 6d 75 6c 61 74 69 76 | 65 20 70 72 6f 64 75 63 |umulativ|e produc|
|00000a70| 74 2c 20 37 35 0d 20 20 | 5c 69 74 65 6d 20 63 75 |t, 75. |\item cu|
|00000a80| 6d 75 6c 61 74 69 76 65 | 20 73 75 6d 6d 61 74 69 |mulative| summati|
|00000a90| 6f 6e 2c 20 37 36 0d 0d | 20 20 5c 69 6e 64 65 78 |on, 76..| \index|
|00000aa0| 73 70 61 63 65 0d 0d 20 | 20 5c 69 74 65 6d 20 64 |space.. | \item d|
|00000ab0| 65 73 63 72 69 70 74 69 | 6f 6e 20 6f 66 20 61 72 |escripti|on of ar|
|00000ac0| 67 75 6d 65 6e 74 20 74 | 79 70 65 2c 20 32 32 37 |gument t|ype, 227|
|00000ad0| 0d 20 20 5c 69 74 65 6d | 20 64 65 74 28 29 2c 20 |. \item| det(), |
|00000ae0| 37 37 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |77. \|subitem |
|00000af0| 65 78 61 6d 70 6c 65 2c | 20 37 37 0d 20 20 5c 69 |example,| 77. \i|
|00000b00| 74 65 6d 20 64 65 74 65 | 72 6d 69 6e 61 6e 74 2c |tem dete|rminant,|
|00000b10| 20 37 37 0d 20 20 5c 69 | 74 65 6d 20 64 69 61 67 | 77. \i|tem diag|
|00000b20| 28 29 2c 20 37 38 0d 20 | 20 20 20 5c 73 75 62 69 |(), 78. | \subi|
|00000b30| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 37 38 0d |tem exam|ple, 78.|
|00000b40| 20 20 5c 69 74 65 6d 20 | 64 69 61 67 6f 6e 61 6c | \item |diagonal|
|00000b50| 69 73 65 20 6d 61 74 72 | 69 78 2c 20 37 38 0d 20 |ise matr|ix, 78. |
|00000b60| 20 5c 69 74 65 6d 20 64 | 69 61 72 79 28 29 2c 20 | \item d|iary(), |
|00000b70| 37 39 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |79. \|subitem |
|00000b80| 65 78 61 6d 70 6c 65 2c | 20 37 39 0d 20 20 5c 69 |example,| 79. \i|
|00000b90| 74 65 6d 20 64 69 66 66 | 28 29 2c 20 38 30 0d 20 |tem diff|(), 80. |
|00000ba0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00000bb0| 70 6c 65 2c 20 38 30 0d | 20 20 5c 69 74 65 6d 20 |ple, 80.| \item |
|00000bc0| 64 69 66 66 65 72 65 6e | 63 65 20 62 65 74 77 65 |differen|ce betwe|
|00000bd0| 65 6e 20 6d 61 74 72 69 | 78 20 65 6c 65 6d 65 6e |en matri|x elemen|
|00000be0| 74 73 2c 20 38 30 0d 20 | 20 5c 69 74 65 6d 20 64 |ts, 80. | \item d|
|00000bf0| 69 66 66 65 72 65 6e 74 | 69 61 6c 20 65 71 75 61 |ifferent|ial equa|
|00000c00| 74 69 6f 6e 73 2c 20 31 | 34 34 0d 20 20 5c 69 74 |tions, 1|44. \it|
|00000c10| 65 6d 20 64 69 67 69 74 | 61 6c 20 66 69 6c 74 65 |em digit|al filte|
|00000c20| 72 20 73 74 72 75 63 74 | 75 72 65 2c 20 39 35 0d |r struct|ure, 95.|
|00000c30| 20 20 5c 69 74 65 6d 20 | 64 69 72 65 63 74 6f 72 | \item |director|
|00000c40| 79 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 63 |y. \s|ubitem c|
|00000c50| 68 61 6e 67 69 6e 67 2c | 20 36 31 0d 20 20 5c 69 |hanging,| 61. \i|
|00000c60| 74 65 6d 20 64 69 73 61 | 73 73 65 6d 62 65 72 2c |tem disa|ssember,|
|00000c70| 20 32 34 31 0d 20 20 5c | 69 74 65 6d 20 64 69 73 | 241. \|item dis|
|00000c80| 70 28 29 2c 20 38 31 0d | 20 20 20 20 5c 73 75 62 |p(), 81.| \sub|
|00000c90| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 38 31 |item exa|mple, 81|
|00000ca0| 0d 20 20 5c 69 74 65 6d | 20 64 69 73 70 6c 61 79 |. \item| display|
|00000cb0| 20 63 68 61 72 61 63 74 | 65 72 69 73 74 69 63 73 | charact|eristics|
|00000cc0| 2c 20 31 39 35 0d 20 20 | 5c 69 74 65 6d 20 64 69 |, 195. |\item di|
|00000cd0| 73 70 6c 61 79 20 65 6e | 74 69 74 79 2c 20 38 31 |splay en|tity, 81|
|00000ce0| 0d 20 20 5c 69 74 65 6d | 20 64 69 76 69 73 69 6f |. \item| divisio|
|00000cf0| 6e 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 6d |n. \s|ubitem m|
|00000d00| 6f 64 75 6c 6f 2c 20 31 | 34 30 0d 20 20 5c 69 74 |odulo, 1|40. \it|
|00000d10| 65 6d 20 64 6f 74 20 70 | 72 6f 64 75 63 74 2c 20 |em dot p|roduct, |
|00000d20| 38 32 0d 20 20 5c 69 74 | 65 6d 20 64 6f 74 28 29 |82. \it|em dot()|
|00000d30| 2c 20 38 32 0d 20 20 20 | 20 5c 73 75 62 69 74 65 |, 82. | \subite|
|00000d40| 6d 20 65 78 61 6d 70 6c | 65 2c 20 38 32 0d 0d 20 |m exampl|e, 82.. |
|00000d50| 20 5c 69 6e 64 65 78 73 | 70 61 63 65 0d 0d 20 20 | \indexs|pace.. |
|00000d60| 5c 69 74 65 6d 20 65 64 | 69 74 20 72 66 69 6c 65 |\item ed|it rfile|
|00000d70| 73 2c 20 31 38 36 0d 20 | 20 5c 69 74 65 6d 20 65 |s, 186. | \item e|
|00000d80| 69 67 28 29 2c 20 38 33 | 0d 20 20 20 20 5c 73 75 |ig(), 83|. \su|
|00000d90| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 38 |bitem ex|ample, 8|
|00000da0| 33 0d 20 20 5c 69 74 65 | 6d 20 65 69 67 65 6e 20 |3. \ite|m eigen |
|00000db0| 64 65 63 6f 6d 70 6f 73 | 69 74 69 6f 6e 2c 20 38 |decompos|ition, 8|
|00000dc0| 33 2d 2d 38 35 0d 20 20 | 5c 69 74 65 6d 20 65 69 |3--85. |\item ei|
|00000dd0| 67 6e 28 29 2c 20 38 34 | 0d 20 20 20 20 5c 73 75 |gn(), 84|. \su|
|00000de0| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 38 |bitem ex|ample, 8|
|00000df0| 34 0d 20 20 5c 69 74 65 | 6d 20 65 69 67 73 28 29 |4. \ite|m eigs()|
|00000e00| 2c 20 38 35 0d 20 20 20 | 20 5c 73 75 62 69 74 65 |, 85. | \subite|
|00000e10| 6d 20 65 78 61 6d 70 6c | 65 2c 20 38 35 0d 20 20 |m exampl|e, 85. |
|00000e20| 5c 69 74 65 6d 20 65 6c | 65 6d 65 6e 74 73 20 6f |\item el|ements o|
|00000e30| 66 20 61 20 73 74 72 69 | 6e 67 2c 20 32 31 31 0d |f a stri|ng, 211.|
|00000e40| 20 20 5c 69 74 65 6d 20 | 65 6e 64 69 6e 67 20 70 | \item |ending p|
|00000e50| 6c 6f 74 20 73 65 73 73 | 69 6f 6e 2c 20 31 35 30 |lot sess|ion, 150|
|00000e60| 0d 20 20 5c 69 74 65 6d | 20 45 6e 76 69 72 6f 6e |. \item| Environ|
|00000e70| 6d 65 6e 74 61 6c 20 76 | 61 72 69 61 62 6c 65 73 |mental v|ariables|
|00000e80| 2c 20 31 30 37 0d 20 20 | 5c 69 74 65 6d 20 65 6e |, 107. |\item en|
|00000e90| 76 69 72 6f 6e 6d 65 6e | 74 61 6c 20 76 61 72 69 |vironmen|tal vari|
|00000ea0| 61 62 6c 65 73 2c 20 35 | 0d 20 20 5c 69 74 65 6d |ables, 5|. \item|
|00000eb0| 20 65 70 73 69 6c 6f 6e | 28 29 2c 20 38 36 0d 20 | epsilon|(), 86. |
|00000ec0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00000ed0| 70 6c 65 2c 20 38 36 0d | 20 20 5c 69 74 65 6d 20 |ple, 86.| \item |
|00000ee0| 65 72 61 73 65 20 61 6c | 6c 20 76 61 72 69 61 62 |erase al|l variab|
|00000ef0| 6c 65 73 2c 20 36 37 0d | 20 20 5c 69 74 65 6d 20 |les, 67.| \item |
|00000f00| 65 72 72 6f 72 20 6d 65 | 73 73 61 67 65 73 2c 20 |error me|ssages, |
|00000f10| 38 37 0d 20 20 5c 69 74 | 65 6d 20 65 72 72 6f 72 |87. \it|em error|
|00000f20| 28 29 2c 20 38 37 0d 20 | 20 20 20 5c 73 75 62 69 |(), 87. | \subi|
|00000f30| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 38 37 0d |tem exam|ple, 87.|
|00000f40| 20 20 5c 69 74 65 6d 20 | 65 76 61 6c 28 29 2c 20 | \item |eval(), |
|00000f50| 38 38 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |88. \|subitem |
|00000f60| 65 78 61 6d 70 6c 65 2c | 20 38 38 0d 20 20 5c 69 |example,| 88. \i|
|00000f70| 74 65 6d 20 65 76 61 6c | 75 61 74 65 20 65 78 70 |tem eval|uate exp|
|00000f80| 72 65 73 73 69 6f 6e 2c | 20 38 38 0d 20 20 5c 69 |ression,| 88. \i|
|00000f90| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 61 |tem exam|ple of a|
|00000fa0| 62 73 28 29 2c 20 34 38 | 0d 20 20 5c 69 74 65 6d |bs(), 48|. \item|
|00000fb0| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 61 63 6f 73 | example| of acos|
|00000fc0| 28 29 2c 20 34 39 0d 20 | 20 5c 69 74 65 6d 20 65 |(), 49. | \item e|
|00000fd0| 78 61 6d 70 6c 65 20 6f | 66 20 61 63 6f 73 68 28 |xample o|f acosh(|
|00000fe0| 29 2c 20 35 30 0d 20 20 | 5c 69 74 65 6d 20 65 78 |), 50. |\item ex|
|00000ff0| 61 6d 70 6c 65 20 6f 66 | 20 61 6c 6c 28 29 2c 20 |ample of| all(), |
|00001000| 35 31 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |51. \it|em examp|
|00001010| 6c 65 20 6f 66 20 61 6e | 79 28 29 2c 20 35 32 0d |le of an|y(), 52.|
|00001020| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001030| 6f 66 20 61 73 69 6e 28 | 29 2c 20 35 33 0d 20 20 |of asin(|), 53. |
|00001040| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|00001050| 20 61 73 69 6e 68 28 29 | 2c 20 35 34 0d 20 20 5c | asinh()|, 54. \|
|00001060| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00001070| 61 74 61 6e 28 29 2c 20 | 35 35 0d 20 20 5c 69 74 |atan(), |55. \it|
|00001080| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 61 74 |em examp|le of at|
|00001090| 61 6e 32 28 29 2c 20 35 | 36 0d 20 20 5c 69 74 65 |an2(), 5|6. \ite|
|000010a0| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 61 74 61 |m exampl|e of ata|
|000010b0| 6e 68 28 29 2c 20 35 37 | 0d 20 20 5c 69 74 65 6d |nh(), 57|. \item|
|000010c0| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 62 61 63 6b | example| of back|
|000010d0| 73 75 62 28 29 2c 20 35 | 38 0d 20 20 5c 69 74 65 |sub(), 5|8. \ite|
|000010e0| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 62 61 6c |m exampl|e of bal|
|000010f0| 61 6e 63 65 28 29 2c 20 | 36 30 0d 20 20 5c 69 74 |ance(), |60. \it|
|00001100| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 63 64 |em examp|le of cd|
|00001110| 28 29 2c 20 36 31 0d 20 | 20 5c 69 74 65 6d 20 65 |(), 61. | \item e|
|00001120| 78 61 6d 70 6c 65 20 6f | 66 20 63 65 69 6c 28 29 |xample o|f ceil()|
|00001130| 2c 20 36 32 0d 20 20 5c | 69 74 65 6d 20 65 78 61 |, 62. \|item exa|
|00001140| 6d 70 6c 65 20 6f 66 20 | 63 68 6f 6c 28 29 2c 20 |mple of |chol(), |
|00001150| 36 33 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |63. \it|em examp|
|00001160| 6c 65 20 6f 66 20 63 6c | 61 73 73 28 29 2c 20 36 |le of cl|ass(), 6|
|00001170| 35 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |5. \ite|m exampl|
|00001180| 65 20 6f 66 20 63 6c 65 | 61 72 28 29 2c 20 36 36 |e of cle|ar(), 66|
|00001190| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|000011a0| 20 6f 66 20 63 6c 65 61 | 72 61 6c 6c 28 29 2c 20 | of clea|rall(), |
|000011b0| 36 37 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |67. \it|em examp|
|000011c0| 6c 65 20 6f 66 20 63 6c | 6f 73 65 28 29 2c 20 36 |le of cl|ose(), 6|
|000011d0| 38 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |8. \ite|m exampl|
|000011e0| 65 20 6f 66 20 63 6f 6d | 70 61 6e 28 29 2c 20 36 |e of com|pan(), 6|
|000011f0| 39 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |9. \ite|m exampl|
|00001200| 65 20 6f 66 20 63 6f 6d | 70 6c 65 6d 65 6e 74 28 |e of com|plement(|
|00001210| 29 2c 20 37 30 0d 20 20 | 5c 69 74 65 6d 20 65 78 |), 70. |\item ex|
|00001220| 61 6d 70 6c 65 20 6f 66 | 20 63 6f 6e 6a 28 29 2c |ample of| conj(),|
|00001230| 20 37 31 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d | 71. \i|tem exam|
|00001240| 70 6c 65 20 6f 66 20 63 | 6f 73 28 29 2c 20 37 32 |ple of c|os(), 72|
|00001250| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001260| 20 6f 66 20 63 6f 73 68 | 28 29 2c 20 37 33 0d 20 | of cosh|(), 73. |
|00001270| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001280| 66 20 63 72 6f 73 73 28 | 29 2c 20 37 34 0d 20 20 |f cross(|), 74. |
|00001290| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|000012a0| 20 63 75 6d 70 72 6f 64 | 28 29 2c 20 37 35 0d 20 | cumprod|(), 75. |
|000012b0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000012c0| 66 20 63 75 6d 73 75 6d | 28 29 2c 20 37 36 0d 20 |f cumsum|(), 76. |
|000012d0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000012e0| 66 20 64 65 74 28 29 2c | 20 37 37 0d 20 20 5c 69 |f det(),| 77. \i|
|000012f0| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 64 |tem exam|ple of d|
|00001300| 69 61 67 28 29 2c 20 37 | 38 0d 20 20 5c 69 74 65 |iag(), 7|8. \ite|
|00001310| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 64 69 61 |m exampl|e of dia|
|00001320| 72 79 28 29 2c 20 37 39 | 0d 20 20 5c 69 74 65 6d |ry(), 79|. \item|
|00001330| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 64 69 66 66 | example| of diff|
|00001340| 28 29 2c 20 38 30 0d 20 | 20 5c 69 74 65 6d 20 65 |(), 80. | \item e|
|00001350| 78 61 6d 70 6c 65 20 6f | 66 20 64 69 73 70 28 29 |xample o|f disp()|
|00001360| 2c 20 38 31 0d 20 20 5c | 69 74 65 6d 20 65 78 61 |, 81. \|item exa|
|00001370| 6d 70 6c 65 20 6f 66 20 | 64 6f 74 28 29 2c 20 38 |mple of |dot(), 8|
|00001380| 32 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |2. \ite|m exampl|
|00001390| 65 20 6f 66 20 65 69 67 | 28 29 2c 20 38 33 0d 20 |e of eig|(), 83. |
|000013a0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000013b0| 66 20 65 69 67 6e 28 29 | 2c 20 38 34 0d 20 20 5c |f eign()|, 84. \|
|000013c0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|000013d0| 65 69 67 73 28 29 2c 20 | 38 35 0d 20 20 5c 69 74 |eigs(), |85. \it|
|000013e0| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 65 70 |em examp|le of ep|
|000013f0| 73 69 6c 6f 6e 28 29 2c | 20 38 36 0d 20 20 5c 69 |silon(),| 86. \i|
|00001400| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 65 |tem exam|ple of e|
|00001410| 72 72 6f 72 28 29 2c 20 | 38 37 0d 20 20 5c 69 74 |rror(), |87. \it|
|00001420| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 65 76 |em examp|le of ev|
|00001430| 61 6c 28 29 2c 20 38 38 | 0d 20 20 5c 69 74 65 6d |al(), 88|. \item|
|00001440| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 65 78 69 73 | example| of exis|
|00001450| 74 28 29 2c 20 38 39 0d | 20 20 5c 69 74 65 6d 20 |t(), 89.| \item |
|00001460| 65 78 61 6d 70 6c 65 20 | 6f 66 20 65 78 70 28 29 |example |of exp()|
|00001470| 2c 20 39 30 0d 20 20 5c | 69 74 65 6d 20 65 78 61 |, 90. \|item exa|
|00001480| 6d 70 6c 65 20 6f 66 20 | 65 79 65 28 29 2c 20 39 |mple of |eye(), 9|
|00001490| 31 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |1. \ite|m exampl|
|000014a0| 65 20 6f 66 20 66 61 63 | 74 6f 72 28 29 2c 20 39 |e of fac|tor(), 9|
|000014b0| 32 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |2. \ite|m exampl|
|000014c0| 65 20 6f 66 20 66 66 74 | 28 29 2c 20 39 33 0d 20 |e of fft|(), 93. |
|000014d0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000014e0| 66 20 66 69 6c 74 65 72 | 28 29 2c 20 39 35 0d 20 |f filter|(), 95. |
|000014f0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001500| 66 20 66 69 6e 64 28 29 | 2c 20 39 37 0d 20 20 5c |f find()|, 97. \|
|00001510| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00001520| 66 69 6e 69 74 65 28 29 | 2c 20 39 38 0d 20 20 5c |finite()|, 98. \|
|00001530| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00001540| 66 69 78 28 29 2c 20 39 | 39 0d 20 20 5c 69 74 65 |fix(), 9|9. \ite|
|00001550| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 66 6c 6f |m exampl|e of flo|
|00001560| 6f 72 28 29 2c 20 31 30 | 30 0d 20 20 5c 69 74 65 |or(), 10|0. \ite|
|00001570| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 66 6f 72 |m exampl|e of for|
|00001580| 6d 61 74 28 29 2c 20 31 | 30 31 0d 20 20 5c 69 74 |mat(), 1|01. \it|
|00001590| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 66 70 |em examp|le of fp|
|000015a0| 72 69 6e 74 66 28 29 2c | 20 31 30 33 0d 20 20 5c |rintf(),| 103. \|
|000015b0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|000015c0| 66 76 73 63 6f 70 65 28 | 29 2c 20 31 30 34 0d 20 |fvscope(|), 104. |
|000015d0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000015e0| 66 20 67 65 74 62 28 29 | 2c 20 31 30 36 0d 20 20 |f getb()|, 106. |
|000015f0| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|00001600| 20 67 65 74 65 6e 76 28 | 29 2c 20 31 30 37 0d 20 | getenv(|), 107. |
|00001610| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001620| 66 20 67 65 74 6c 69 6e | 65 28 29 2c 20 31 30 38 |f getlin|e(), 108|
|00001630| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001640| 20 6f 66 20 68 65 73 73 | 28 29 2c 20 31 31 30 0d | of hess|(), 110.|
|00001650| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001660| 6f 66 20 68 69 6c 62 28 | 29 2c 20 31 31 31 0d 20 |of hilb(|), 111. |
|00001670| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001680| 66 20 69 66 20 6c 6f 6f | 70 2c 20 32 35 0d 20 20 |f if loo|p, 25. |
|00001690| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|000016a0| 20 69 66 66 74 28 29 2c | 20 31 31 32 0d 20 20 5c | ifft(),| 112. \|
|000016b0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|000016c0| 69 6d 61 67 28 29 2c 20 | 31 31 33 0d 20 20 5c 69 |imag(), |113. \i|
|000016d0| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 69 |tem exam|ple of i|
|000016e0| 6e 66 28 29 2c 20 31 31 | 34 0d 20 20 5c 69 74 65 |nf(), 11|4. \ite|
|000016f0| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 69 6e 70 |m exampl|e of inp|
|00001700| 75 74 28 29 2c 20 31 31 | 35 0d 20 20 5c 69 74 65 |ut(), 11|5. \ite|
|00001710| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 69 6e 74 |m exampl|e of int|
|00001720| 28 29 2c 20 31 31 36 0d | 20 20 5c 69 74 65 6d 20 |(), 116.| \item |
|00001730| 65 78 61 6d 70 6c 65 20 | 6f 66 20 69 6e 74 32 73 |example |of int2s|
|00001740| 74 72 28 29 2c 20 31 31 | 37 0d 20 20 5c 69 74 65 |tr(), 11|7. \ite|
|00001750| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 69 6e 74 |m exampl|e of int|
|00001760| 65 72 73 65 63 74 69 6f | 6e 28 29 2c 20 31 31 38 |ersectio|n(), 118|
|00001770| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001780| 20 6f 66 20 69 6e 76 28 | 29 2c 20 31 31 39 0d 20 | of inv(|), 119. |
|00001790| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000017a0| 66 20 69 73 65 6d 70 74 | 79 28 29 2c 20 31 32 30 |f isempt|y(), 120|
|000017b0| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|000017c0| 20 6f 66 20 69 73 69 6e | 66 28 29 2c 20 31 32 31 | of isin|f(), 121|
|000017d0| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|000017e0| 20 6f 66 20 69 73 6e 61 | 6e 28 29 2c 20 31 32 32 | of isna|n(), 122|
|000017f0| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001800| 20 6f 66 20 69 73 73 79 | 6d 6d 28 29 2c 20 31 32 | of issy|mm(), 12|
|00001810| 33 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |3. \ite|m exampl|
|00001820| 65 20 6f 66 20 6c 65 6e | 67 74 68 28 29 2c 20 31 |e of len|gth(), 1|
|00001830| 32 34 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |24. \it|em examp|
|00001840| 6c 65 20 6f 66 20 6c 69 | 6e 73 70 61 63 65 28 29 |le of li|nspace()|
|00001850| 2c 20 31 32 35 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 125. |\item ex|
|00001860| 61 6d 70 6c 65 20 6f 66 | 20 6c 6f 61 64 28 29 2c |ample of| load(),|
|00001870| 20 31 32 36 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 126. \|item exa|
|00001880| 6d 70 6c 65 20 6f 66 20 | 6c 6f 67 28 29 2c 20 31 |mple of |log(), 1|
|00001890| 32 37 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |27. \it|em examp|
|000018a0| 6c 65 20 6f 66 20 6c 6f | 67 31 30 28 29 2c 20 31 |le of lo|g10(), 1|
|000018b0| 32 38 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |28. \it|em examp|
|000018c0| 6c 65 20 6f 66 20 6c 6f | 67 73 70 61 63 65 28 29 |le of lo|gspace()|
|000018d0| 2c 20 31 32 39 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 129. |\item ex|
|000018e0| 61 6d 70 6c 65 20 6f 66 | 20 6c 75 28 29 2c 20 31 |ample of| lu(), 1|
|000018f0| 33 30 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |30. \it|em examp|
|00001900| 6c 65 20 6f 66 20 6c 79 | 61 70 28 29 2c 20 31 33 |le of ly|ap(), 13|
|00001910| 31 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |1. \ite|m exampl|
|00001920| 65 20 6f 66 20 6d 61 74 | 72 69 78 28 29 2c 20 31 |e of mat|rix(), 1|
|00001930| 33 33 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |33. \it|em examp|
|00001940| 6c 65 20 6f 66 20 6d 61 | 78 28 29 2c 20 31 33 34 |le of ma|x(), 134|
|00001950| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001960| 20 6f 66 20 6d 61 78 69 | 28 29 2c 20 31 33 35 0d | of maxi|(), 135.|
|00001970| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001980| 6f 66 20 6d 65 61 6e 28 | 29 2c 20 31 33 36 0d 20 |of mean(|), 136. |
|00001990| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000019a0| 66 20 6d 65 6d 62 65 72 | 73 28 29 2c 20 31 33 37 |f member|s(), 137|
|000019b0| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|000019c0| 20 6f 66 20 6d 69 6e 28 | 29 2c 20 31 33 38 0d 20 | of min(|), 138. |
|000019d0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|000019e0| 66 20 6d 69 6e 69 28 29 | 2c 20 31 33 39 0d 20 20 |f mini()|, 139. |
|000019f0| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|00001a00| 20 6d 6f 64 28 29 2c 20 | 31 34 30 0d 20 20 5c 69 | mod(), |140. \i|
|00001a10| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 6e |tem exam|ple of n|
|00001a20| 61 6e 28 29 2c 20 31 34 | 31 0d 20 20 5c 69 74 65 |an(), 14|1. \ite|
|00001a30| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 6e 6f 72 |m exampl|e of nor|
|00001a40| 6d 28 29 2c 20 31 34 32 | 0d 20 20 5c 69 74 65 6d |m(), 142|. \item|
|00001a50| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 6e 75 6d 32 | example| of num2|
|00001a60| 73 74 72 28 29 2c 20 31 | 34 33 0d 20 20 5c 69 74 |str(), 1|43. \it|
|00001a70| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 6f 64 |em examp|le of od|
|00001a80| 65 28 29 2c 20 31 34 35 | 0d 20 20 5c 69 74 65 6d |e(), 145|. \item|
|00001a90| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 6f 6e 65 73 | example| of ones|
|00001aa0| 28 29 2c 20 31 34 36 0d | 20 20 5c 69 74 65 6d 20 |(), 146.| \item |
|00001ab0| 65 78 61 6d 70 6c 65 20 | 6f 66 20 6f 70 65 6e 28 |example |of open(|
|00001ac0| 29 2c 20 31 34 37 0d 20 | 20 5c 69 74 65 6d 20 65 |), 147. | \item e|
|00001ad0| 78 61 6d 70 6c 65 20 6f | 66 20 70 61 75 73 65 28 |xample o|f pause(|
|00001ae0| 29 2c 20 31 34 38 0d 20 | 20 5c 69 74 65 6d 20 65 |), 148. | \item e|
|00001af0| 78 61 6d 70 6c 65 20 6f | 66 20 70 63 6c 6f 73 65 |xample o|f pclose|
|00001b00| 28 29 2c 20 31 34 39 0d | 20 20 5c 69 74 65 6d 20 |(), 149.| \item |
|00001b10| 65 78 61 6d 70 6c 65 20 | 6f 66 20 70 65 6e 64 28 |example |of pend(|
|00001b20| 29 2c 20 31 35 30 0d 20 | 20 5c 69 74 65 6d 20 65 |), 150. | \item e|
|00001b30| 78 61 6d 70 6c 65 20 6f | 66 20 70 6c 61 6c 74 28 |xample o|f plalt(|
|00001b40| 29 2c 20 31 35 31 0d 20 | 20 5c 69 74 65 6d 20 65 |), 151. | \item e|
|00001b50| 78 61 6d 70 6c 65 20 6f | 66 20 70 6c 61 73 70 65 |xample o|f plaspe|
|00001b60| 63 74 28 29 2c 20 31 35 | 32 0d 20 20 5c 69 74 65 |ct(), 15|2. \ite|
|00001b70| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 70 6c 61 |m exampl|e of pla|
|00001b80| 78 69 73 28 29 2c 20 31 | 35 33 0d 20 20 5c 69 74 |xis(), 1|53. \it|
|00001b90| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 70 6c |em examp|le of pl|
|00001ba0| 61 7a 28 29 2c 20 31 35 | 34 0d 20 20 5c 69 74 65 |az(), 15|4. \ite|
|00001bb0| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 70 6c 65 |m exampl|e of ple|
|00001bc0| 67 65 6e 64 28 29 2c 20 | 31 35 35 0d 20 20 5c 69 |gend(), |155. \i|
|00001bd0| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 70 |tem exam|ple of p|
|00001be0| 6c 67 72 69 64 28 29 2c | 20 31 35 36 0d 20 20 5c |lgrid(),| 156. \|
|00001bf0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00001c00| 70 6c 67 72 69 64 33 28 | 29 2c 20 31 35 37 0d 20 |plgrid3(|), 157. |
|00001c10| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001c20| 66 20 70 6c 68 69 73 74 | 28 29 2c 20 31 35 38 0d |f plhist|(), 158.|
|00001c30| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001c40| 6f 66 20 70 6c 68 69 73 | 74 78 28 29 2c 20 31 35 |of plhis|tx(), 15|
|00001c50| 39 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |9. \ite|m exampl|
|00001c60| 65 20 6f 66 20 70 6c 68 | 6f 6c 64 28 29 2c 20 31 |e of plh|old(), 1|
|00001c70| 36 30 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |60. \it|em examp|
|00001c80| 6c 65 20 6f 66 20 70 6c | 68 6f 6c 64 5c 5f 6f 66 |le of pl|hold\_of|
|00001c90| 66 28 29 2c 20 31 36 31 | 0d 20 20 5c 69 74 65 6d |f(), 161|. \item|
|00001ca0| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 70 6c 69 6d | example| of plim|
|00001cb0| 69 74 73 28 29 2c 20 31 | 36 32 0d 20 20 5c 69 74 |its(), 1|62. \it|
|00001cc0| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 70 6c |em examp|le of pl|
|00001cd0| 6d 65 73 68 28 29 2c 20 | 31 36 33 0d 20 20 5c 69 |mesh(), |163. \i|
|00001ce0| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 70 |tem exam|ple of p|
|00001cf0| 6c 6f 74 28 29 2c 20 31 | 36 34 0d 20 20 5c 69 74 |lot(), 1|64. \it|
|00001d00| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 70 6c |em examp|le of pl|
|00001d10| 6f 74 33 28 29 2c 20 31 | 36 35 0d 20 20 5c 69 74 |ot3(), 1|65. \it|
|00001d20| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 70 6c |em examp|le of pl|
|00001d30| 70 72 69 6e 74 28 29 2c | 20 31 36 36 0d 20 20 5c |print(),| 166. \|
|00001d40| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00001d50| 70 6c 70 74 65 78 28 29 | 2c 20 31 36 37 0d 20 20 |plptex()|, 167. |
|00001d60| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|00001d70| 20 70 6c 73 74 79 6c 65 | 28 29 2c 20 31 36 38 0d | plstyle|(), 168.|
|00001d80| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001d90| 6f 66 20 70 6c 77 69 64 | 28 29 2c 20 31 36 39 0d |of plwid|(), 169.|
|00001da0| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001db0| 6f 66 20 70 72 69 6e 74 | 66 28 29 2c 20 31 37 31 |of print|f(), 171|
|00001dc0| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001dd0| 20 6f 66 20 70 72 69 6e | 74 6d 61 74 28 29 2c 20 | of prin|tmat(), |
|00001de0| 31 37 32 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |172. \i|tem exam|
|00001df0| 70 6c 65 20 6f 66 20 70 | 72 6f 64 28 29 2c 20 31 |ple of p|rod(), 1|
|00001e00| 37 33 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |73. \it|em examp|
|00001e10| 6c 65 20 6f 66 20 70 73 | 74 61 72 74 28 29 2c 20 |le of ps|tart(), |
|00001e20| 31 37 34 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |174. \i|tem exam|
|00001e30| 70 6c 65 20 6f 66 20 70 | 74 69 74 6c 65 28 29 2c |ple of p|title(),|
|00001e40| 20 31 37 35 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 175. \|item exa|
|00001e50| 6d 70 6c 65 20 6f 66 20 | 70 77 69 6e 28 29 2c 20 |mple of |pwin(), |
|00001e60| 31 37 36 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |176. \i|tem exam|
|00001e70| 70 6c 65 20 6f 66 20 71 | 72 28 29 2c 20 31 37 37 |ple of q|r(), 177|
|00001e80| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00001e90| 20 6f 66 20 72 61 6e 64 | 28 29 2c 20 31 37 39 0d | of rand|(), 179.|
|00001ea0| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00001eb0| 6f 66 20 72 61 6e 6b 28 | 29 2c 20 31 38 30 0d 20 |of rank(|), 180. |
|00001ec0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001ed0| 66 20 72 63 6f 6e 64 28 | 29 2c 20 31 38 31 0d 20 |f rcond(|), 181. |
|00001ee0| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00001ef0| 66 20 72 65 61 64 28 29 | 2c 20 31 38 32 0d 20 20 |f read()|, 182. |
|00001f00| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|00001f10| 20 72 65 61 64 6d 28 29 | 2c 20 31 38 33 2c 20 31 | readm()|, 183, 1|
|00001f20| 38 34 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |84. \it|em examp|
|00001f30| 6c 65 20 6f 66 20 72 65 | 61 6c 28 29 2c 20 31 38 |le of re|al(), 18|
|00001f40| 35 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |5. \ite|m exampl|
|00001f50| 65 20 6f 66 20 72 65 64 | 69 74 28 29 2c 20 31 38 |e of red|it(), 18|
|00001f60| 36 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |6. \ite|m exampl|
|00001f70| 65 20 6f 66 20 72 65 70 | 6c 6f 74 28 29 2c 20 31 |e of rep|lot(), 1|
|00001f80| 38 37 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |87. \it|em examp|
|00001f90| 6c 65 20 6f 66 20 72 65 | 73 68 61 70 65 28 29 2c |le of re|shape(),|
|00001fa0| 20 31 38 38 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 188. \|item exa|
|00001fb0| 6d 70 6c 65 20 6f 66 20 | 72 6f 75 6e 64 28 29 2c |mple of |round(),|
|00001fc0| 20 31 38 39 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 189. \|item exa|
|00001fd0| 6d 70 6c 65 20 6f 66 20 | 73 61 76 65 28 29 2c 20 |mple of |save(), |
|00001fe0| 31 39 30 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |190. \i|tem exam|
|00001ff0| 70 6c 65 20 6f 66 20 73 | 63 61 6c 61 72 28 29 2c |ple of s|calar(),|
|00002000| 20 31 39 31 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 191. \|item exa|
|00002010| 6d 70 6c 65 20 6f 66 20 | 73 63 68 6f 72 64 28 29 |mple of |schord()|
|00002020| 2c 20 31 39 32 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 192. |\item ex|
|00002030| 61 6d 70 6c 65 20 6f 66 | 20 73 63 68 75 72 28 29 |ample of| schur()|
|00002040| 2c 20 31 39 33 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 193. |\item ex|
|00002050| 61 6d 70 6c 65 20 6f 66 | 20 73 65 74 28 29 2c 20 |ample of| set(), |
|00002060| 31 39 34 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |194. \i|tem exam|
|00002070| 70 6c 65 20 6f 66 20 73 | 68 6f 77 28 29 2c 20 31 |ple of s|how(), 1|
|00002080| 39 35 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |95. \it|em examp|
|00002090| 6c 65 20 6f 66 20 73 68 | 6f 77 70 77 69 6e 28 29 |le of sh|owpwin()|
|000020a0| 2c 20 31 39 37 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 197. |\item ex|
|000020b0| 61 6d 70 6c 65 20 6f 66 | 20 73 69 67 6e 28 29 2c |ample of| sign(),|
|000020c0| 20 31 39 38 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 198. \|item exa|
|000020d0| 6d 70 6c 65 20 6f 66 20 | 73 69 6e 28 29 2c 20 31 |mple of |sin(), 1|
|000020e0| 39 39 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |99. \it|em examp|
|000020f0| 6c 65 20 6f 66 20 73 69 | 6e 68 28 29 2c 20 32 30 |le of si|nh(), 20|
|00002100| 30 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |0. \ite|m exampl|
|00002110| 65 20 6f 66 20 73 69 7a | 65 28 29 2c 20 32 30 31 |e of siz|e(), 201|
|00002120| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00002130| 20 6f 66 20 73 69 7a 65 | 6f 66 28 29 2c 20 32 30 | of size|of(), 20|
|00002140| 32 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |2. \ite|m exampl|
|00002150| 65 20 6f 66 20 73 6f 6c | 76 65 28 29 2c 20 32 30 |e of sol|ve(), 20|
|00002160| 33 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |3. \ite|m exampl|
|00002170| 65 20 6f 66 20 73 6f 72 | 74 28 29 2c 20 32 30 35 |e of sor|t(), 205|
|00002180| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00002190| 20 6f 66 20 73 70 72 69 | 6e 74 66 28 29 2c 20 32 | of spri|ntf(), 2|
|000021a0| 30 37 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |07. \it|em examp|
|000021b0| 6c 65 20 6f 66 20 73 71 | 72 74 28 29 2c 20 32 30 |le of sq|rt(), 20|
|000021c0| 38 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |8. \ite|m exampl|
|000021d0| 65 20 6f 66 20 73 72 61 | 6e 64 28 29 2c 20 32 30 |e of sra|nd(), 20|
|000021e0| 39 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |9. \ite|m exampl|
|000021f0| 65 20 6f 66 20 73 74 64 | 28 29 2c 20 32 31 30 0d |e of std|(), 210.|
|00002200| 20 20 5c 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 20 | \item |example |
|00002210| 6f 66 20 73 74 72 73 70 | 6c 74 28 29 2c 20 32 31 |of strsp|lt(), 21|
|00002220| 31 0d 20 20 5c 69 74 65 | 6d 20 65 78 61 6d 70 6c |1. \ite|m exampl|
|00002230| 65 20 6f 66 20 73 74 72 | 74 6f 64 28 29 2c 20 32 |e of str|tod(), 2|
|00002240| 31 32 0d 20 20 5c 69 74 | 65 6d 20 65 78 61 6d 70 |12. \it|em examp|
|00002250| 6c 65 20 6f 66 20 73 75 | 6d 28 29 2c 20 32 31 33 |le of su|m(), 213|
|00002260| 0d 20 20 5c 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |. \item| example|
|00002270| 20 6f 66 20 73 76 64 28 | 29 2c 20 32 31 34 0d 20 | of svd(|), 214. |
|00002280| 20 5c 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 20 6f | \item e|xample o|
|00002290| 66 20 73 79 6c 76 28 29 | 2c 20 32 31 36 0d 20 20 |f sylv()|, 216. |
|000022a0| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|000022b0| 20 73 79 6d 6d 28 29 2c | 20 32 31 37 0d 20 20 5c | symm(),| 217. \|
|000022c0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|000022d0| 73 79 73 74 65 6d 28 29 | 2c 20 32 31 38 0d 20 20 |system()|, 218. |
|000022e0| 5c 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 20 6f 66 |\item ex|ample of|
|000022f0| 20 74 61 6e 28 29 2c 20 | 32 31 39 0d 20 20 5c 69 | tan(), |219. \i|
|00002300| 74 65 6d 20 65 78 61 6d | 70 6c 65 20 6f 66 20 74 |tem exam|ple of t|
|00002310| 61 6e 68 28 29 2c 20 32 | 32 30 0d 20 20 5c 69 74 |anh(), 2|20. \it|
|00002320| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 74 69 |em examp|le of ti|
|00002330| 63 28 29 2c 20 32 32 31 | 0d 20 20 5c 69 74 65 6d |c(), 221|. \item|
|00002340| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 74 6d 70 5c | example| of tmp\|
|00002350| 5f 66 69 6c 65 28 29 2c | 20 32 32 32 0d 20 20 5c |_file(),| 222. \|
|00002360| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 20 6f 66 20 |item exa|mple of |
|00002370| 74 6f 63 28 29 2c 20 32 | 32 33 0d 20 20 5c 69 74 |toc(), 2|23. \it|
|00002380| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 74 72 |em examp|le of tr|
|00002390| 61 63 65 28 29 2c 20 32 | 32 34 0d 20 20 5c 69 74 |ace(), 2|24. \it|
|000023a0| 65 6d 20 65 78 61 6d 70 | 6c 65 20 6f 66 20 74 72 |em examp|le of tr|
|000023b0| 69 6c 28 29 2c 20 32 32 | 35 0d 20 20 5c 69 74 65 |il(), 22|5. \ite|
|000023c0| 6d 20 65 78 61 6d 70 6c | 65 20 6f 66 20 74 72 69 |m exampl|e of tri|
|000023d0| 75 28 29 2c 20 32 32 36 | 0d 20 20 5c 69 74 65 6d |u(), 226|. \item|
|000023e0| 20 65 78 61 6d 70 6c 65 | 20 6f 66 20 74 79 70 65 | example| of type|
|000023f0| 28 29 2c 20 32 32 37 0d | 20 20 5c 69 74 65 6d 20 |(), 227.| \item |
|00002400| 65 78 61 6d 70 6c 65 20 | 6f 66 20 75 6e 69 6f 6e |example |of union|
|00002410| 28 29 2c 20 32 32 38 0d | 20 20 5c 69 74 65 6d 20 |(), 228.| \item |
|00002420| 65 78 61 6d 70 6c 65 20 | 6f 66 20 77 68 61 74 28 |example |of what(|
|00002430| 29 2c 20 32 32 39 0d 20 | 20 5c 69 74 65 6d 20 65 |), 229. | \item e|
|00002440| 78 61 6d 70 6c 65 20 6f | 66 20 77 68 6f 28 29 2c |xample o|f who(),|
|00002450| 20 32 33 31 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 231. \|item exa|
|00002460| 6d 70 6c 65 20 6f 66 20 | 77 68 6f 73 28 29 2c 20 |mple of |whos(), |
|00002470| 32 33 32 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |232. \i|tem exam|
|00002480| 70 6c 65 20 6f 66 20 77 | 72 69 74 65 28 29 2c 20 |ple of w|rite(), |
|00002490| 32 33 33 0d 20 20 5c 69 | 74 65 6d 20 65 78 61 6d |233. \i|tem exam|
|000024a0| 70 6c 65 20 6f 66 20 77 | 72 69 74 65 62 28 29 2c |ple of w|riteb(),|
|000024b0| 20 32 33 35 0d 20 20 5c | 69 74 65 6d 20 65 78 61 | 235. \|item exa|
|000024c0| 6d 70 6c 65 20 6f 66 20 | 77 72 69 74 65 6d 28 29 |mple of |writem()|
|000024d0| 2c 20 32 33 36 0d 20 20 | 5c 69 74 65 6d 20 65 78 |, 236. |\item ex|
|000024e0| 61 6d 70 6c 65 20 6f 66 | 20 78 6c 61 62 65 6c 28 |ample of| xlabel(|
|000024f0| 29 2c 20 32 33 37 0d 20 | 20 5c 69 74 65 6d 20 65 |), 237. | \item e|
|00002500| 78 61 6d 70 6c 65 20 6f | 66 20 79 6c 61 62 65 6c |xample o|f ylabel|
|00002510| 28 29 2c 20 32 33 38 0d | 20 20 5c 69 74 65 6d 20 |(), 238.| \item |
|00002520| 65 78 61 6d 70 6c 65 20 | 6f 66 20 7a 65 72 6f 73 |example |of zeros|
|00002530| 28 29 2c 20 32 33 39 0d | 20 20 5c 69 74 65 6d 20 |(), 239.| \item |
|00002540| 65 78 61 6d 70 6c 65 20 | 6f 66 20 7a 6c 61 62 65 |example |of zlabe|
|00002550| 6c 28 29 2c 20 32 34 30 | 0d 20 20 5c 69 74 65 6d |l(), 240|. \item|
|00002560| 20 65 78 69 73 74 28 29 | 2c 20 38 39 0d 20 20 20 | exist()|, 89. |
|00002570| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00002580| 65 2c 20 38 39 0d 20 20 | 5c 69 74 65 6d 20 65 78 |e, 89. |\item ex|
|00002590| 70 28 29 2c 20 39 30 0d | 20 20 20 20 5c 73 75 62 |p(), 90.| \sub|
|000025a0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 39 30 |item exa|mple, 90|
|000025b0| 0d 20 20 5c 69 74 65 6d | 20 65 78 70 6f 6e 65 6e |. \item| exponen|
|000025c0| 74 69 61 6c 2c 20 39 30 | 0d 20 20 5c 69 74 65 6d |tial, 90|. \item|
|000025d0| 20 65 78 70 6f 6e 65 6e | 74 69 61 6c 20 64 69 73 | exponen|tial dis|
|000025e0| 74 72 69 62 75 74 69 6f | 6e 2c 20 31 37 38 0d 20 |tributio|n, 178. |
|000025f0| 20 5c 69 74 65 6d 20 65 | 79 65 28 29 2c 20 39 31 | \item e|ye(), 91|
|00002600| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00002610| 61 6d 70 6c 65 2c 20 39 | 31 0d 0d 20 20 5c 69 6e |ample, 9|1.. \in|
|00002620| 64 65 78 73 70 61 63 65 | 0d 0d 20 20 5c 69 74 65 |dexspace|.. \ite|
|00002630| 6d 20 24 5c 63 61 6c 20 | 46 24 20 64 69 73 74 72 |m $\cal |F$ distr|
|00002640| 69 62 75 74 69 6f 6e 2c | 20 31 37 38 0d 20 20 5c |ibution,| 178. \|
|00002650| 69 74 65 6d 20 66 61 63 | 74 6f 72 28 29 2c 20 39 |item fac|tor(), 9|
|00002660| 32 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 65 |2. \s|ubitem e|
|00002670| 78 61 6d 70 6c 65 2c 20 | 39 32 0d 20 20 5c 69 74 |xample, |92. \it|
|00002680| 65 6d 20 66 61 73 74 20 | 66 6f 75 72 69 65 72 20 |em fast |fourier |
|00002690| 74 72 61 6e 73 66 6f 72 | 6d 2c 20 39 33 0d 20 20 |transfor|m, 93. |
|000026a0| 5c 69 74 65 6d 20 66 66 | 74 28 29 2c 20 39 33 0d |\item ff|t(), 93.|
|000026b0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|000026c0| 6d 70 6c 65 2c 20 39 33 | 0d 20 20 5c 69 74 65 6d |mple, 93|. \item|
|000026d0| 20 66 69 6c 65 0d 20 20 | 20 20 5c 73 75 62 69 74 | file. | \subit|
|000026e0| 65 6d 20 63 6c 6f 73 65 | 2c 20 36 38 0d 20 20 20 |em close|, 68. |
|000026f0| 20 5c 73 75 62 69 74 65 | 6d 20 6c 6f 67 67 69 6e | \subite|m loggin|
|00002700| 67 20 74 6f 2c 20 37 39 | 0d 20 20 20 20 5c 73 75 |g to, 79|. \su|
|00002710| 62 69 74 65 6d 20 6f 75 | 74 70 75 74 2c 20 32 33 |bitem ou|tput, 23|
|00002720| 33 0d 20 20 5c 69 74 65 | 6d 20 66 69 6c 65 20 6c |3. \ite|m file l|
|00002730| 6f 61 64 2c 20 31 32 36 | 0d 20 20 5c 69 74 65 6d |oad, 126|. \item|
|00002740| 20 66 69 6c 65 20 72 65 | 61 64 2c 20 31 38 32 0d | file re|ad, 182.|
|00002750| 20 20 5c 69 74 65 6d 20 | 66 69 6c 65 6e 61 6d 65 | \item |filename|
|00002760| 20 67 65 6e 65 72 61 74 | 6f 72 2c 20 32 32 32 0d | generat|or, 222.|
|00002770| 20 20 5c 69 74 65 6d 20 | 66 69 6c 74 65 72 28 29 | \item |filter()|
|00002780| 2c 20 39 35 0d 20 20 20 | 20 5c 73 75 62 69 74 65 |, 95. | \subite|
|00002790| 6d 20 65 78 61 6d 70 6c | 65 2c 20 39 35 0d 20 20 |m exampl|e, 95. |
|000027a0| 5c 69 74 65 6d 20 66 69 | 6c 74 65 72 69 6e 67 0d |\item fi|ltering.|
|000027b0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 64 69 67 | \sub|item dig|
|000027c0| 69 74 61 6c 2c 20 39 35 | 0d 20 20 5c 69 74 65 6d |ital, 95|. \item|
|000027d0| 20 66 69 6e 64 20 6e 6f | 6e 2d 7a 65 72 6f 20 65 | find no|n-zero e|
|000027e0| 6c 65 6d 65 6e 74 73 2c | 20 39 37 0d 20 20 5c 69 |lements,| 97. \i|
|000027f0| 74 65 6d 20 66 69 6e 64 | 28 29 2c 20 39 37 0d 20 |tem find|(), 97. |
|00002800| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00002810| 70 6c 65 2c 20 39 37 0d | 20 20 5c 69 74 65 6d 20 |ple, 97.| \item |
|00002820| 66 69 6e 69 74 65 28 29 | 2c 20 39 38 0d 20 20 20 |finite()|, 98. |
|00002830| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00002840| 65 2c 20 39 38 0d 20 20 | 5c 69 74 65 6d 20 66 69 |e, 98. |\item fi|
|00002850| 78 28 29 2c 20 39 39 0d | 20 20 20 20 5c 73 75 62 |x(), 99.| \sub|
|00002860| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 39 39 |item exa|mple, 99|
|00002870| 0d 20 20 5c 69 74 65 6d | 20 66 6c 6f 6f 72 20 76 |. \item| floor v|
|00002880| 61 6c 75 65 2c 20 31 30 | 30 0d 20 20 5c 69 74 65 |alue, 10|0. \ite|
|00002890| 6d 20 66 6c 6f 6f 72 28 | 29 2c 20 31 30 30 0d 20 |m floor(|), 100. |
|000028a0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|000028b0| 70 6c 65 2c 20 31 30 30 | 0d 20 20 5c 69 74 65 6d |ple, 100|. \item|
|000028c0| 20 66 6f 72 6d 61 74 28 | 29 2c 20 31 30 31 0d 20 | format(|), 101. |
|000028d0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|000028e0| 70 6c 65 2c 20 31 30 31 | 0d 20 20 5c 69 74 65 6d |ple, 101|. \item|
|000028f0| 20 66 6f 72 6d 61 74 74 | 65 64 20 6f 75 74 70 75 | formatt|ed outpu|
|00002900| 74 2c 20 31 37 30 0d 20 | 20 5c 69 74 65 6d 20 66 |t, 170. | \item f|
|00002910| 6f 72 6d 61 74 74 65 64 | 20 6f 75 74 70 75 74 20 |ormatted| output |
|00002920| 74 6f 20 61 20 66 69 6c | 65 2c 20 31 30 32 0d 20 |to a fil|e, 102. |
|00002930| 20 5c 69 74 65 6d 20 46 | 6f 75 72 69 65 72 20 74 | \item F|ourier t|
|00002940| 72 61 6e 73 66 6f 72 6d | 2c 20 31 31 32 0d 20 20 |ransform|, 112. |
|00002950| 5c 69 74 65 6d 20 66 6f | 75 72 69 65 72 20 74 72 |\item fo|urier tr|
|00002960| 61 6e 73 66 6f 72 6d 2c | 20 39 33 0d 20 20 5c 69 |ansform,| 93. \i|
|00002970| 74 65 6d 20 66 70 72 69 | 6e 74 66 28 29 2c 20 31 |tem fpri|ntf(), 1|
|00002980| 30 32 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |02. \|subitem |
|00002990| 65 78 61 6d 70 6c 65 2c | 20 31 30 33 0d 20 20 5c |example,| 103. \|
|000029a0| 69 74 65 6d 20 46 72 6f | 62 65 6e 69 75 73 20 6e |item Fro|benius n|
|000029b0| 6f 72 6d 2c 20 31 34 32 | 0d 20 20 5c 69 74 65 6d |orm, 142|. \item|
|000029c0| 20 66 75 6e 63 74 69 6f | 6e 0d 20 20 20 20 5c 73 | functio|n. \s|
|000029d0| 75 62 69 74 65 6d 20 63 | 6c 65 61 72 69 6e 67 2c |ubitem c|learing,|
|000029e0| 20 36 36 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d | 66. |\subitem|
|000029f0| 20 73 63 6f 70 65 20 6f | 66 20 61 72 67 75 6d 65 | scope o|f argume|
|00002a00| 6e 74 73 2c 20 31 30 34 | 0d 20 20 5c 69 74 65 6d |nts, 104|. \item|
|00002a10| 20 66 75 6e 63 74 69 6f | 6e 20 6c 69 73 74 2c 20 | functio|n list, |
|00002a20| 32 32 39 0d 20 20 5c 69 | 74 65 6d 20 66 76 73 63 |229. \i|tem fvsc|
|00002a30| 6f 70 65 28 29 2c 20 31 | 30 34 0d 20 20 20 20 5c |ope(), 1|04. \|
|00002a40| 73 75 62 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 2c |subitem |example,|
|00002a50| 20 31 30 34 0d 0d 20 20 | 5c 69 6e 64 65 78 73 70 | 104.. |\indexsp|
|00002a60| 61 63 65 0d 0d 20 20 5c | 69 74 65 6d 20 67 65 74 |ace.. \|item get|
|00002a70| 20 75 73 65 72 20 72 65 | 73 70 6f 6e 73 65 2c 20 | user re|sponse, |
|00002a80| 31 31 35 0d 20 20 5c 69 | 74 65 6d 20 67 65 74 62 |115. \i|tem getb|
|00002a90| 28 29 2c 20 31 30 36 0d | 20 20 20 20 5c 73 75 62 |(), 106.| \sub|
|00002aa0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 30 |item exa|mple, 10|
|00002ab0| 36 0d 20 20 5c 69 74 65 | 6d 20 67 65 74 65 6e 76 |6. \ite|m getenv|
|00002ac0| 28 29 2c 20 31 30 37 0d | 20 20 20 20 5c 73 75 62 |(), 107.| \sub|
|00002ad0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 30 |item exa|mple, 10|
|00002ae0| 37 0d 20 20 5c 69 74 65 | 6d 20 67 65 74 6c 69 6e |7. \ite|m getlin|
|00002af0| 65 28 29 2c 20 31 30 38 | 0d 20 20 20 20 5c 73 75 |e(), 108|. \su|
|00002b00| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 31 |bitem ex|ample, 1|
|00002b10| 30 38 0d 20 20 5c 69 74 | 65 6d 20 47 65 74 74 69 |08. \it|em Getti|
|00002b20| 6e 67 20 65 6e 76 69 72 | 6f 6e 6d 65 6e 74 61 6c |ng envir|onmental|
|00002b30| 20 76 61 72 69 61 62 6c | 65 73 2c 20 31 30 37 0d | variabl|es, 107.|
|00002b40| 20 20 5c 69 74 65 6d 20 | 67 6c 6f 62 61 6c 20 73 | \item |global s|
|00002b50| 79 6d 62 6f 6c 20 74 61 | 62 6c 65 2c 20 33 32 0d |ymbol ta|ble, 32.|
|00002b60| 0d 20 20 5c 69 6e 64 65 | 78 73 70 61 63 65 0d 0d |. \inde|xspace..|
|00002b70| 20 20 5c 69 74 65 6d 20 | 68 65 6c 70 2c 20 35 0d | \item |help, 5.|
|00002b80| 20 20 5c 69 74 65 6d 20 | 68 65 73 73 28 29 2c 20 | \item |hess(), |
|00002b90| 31 31 30 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |110. |\subitem|
|00002ba0| 20 65 78 61 6d 70 6c 65 | 2c 20 31 31 30 0d 20 20 | example|, 110. |
|00002bb0| 5c 69 74 65 6d 20 48 65 | 73 73 65 6e 62 65 72 67 |\item He|ssenberg|
|00002bc0| 20 6d 61 74 72 69 78 2c | 20 31 31 30 0d 20 20 5c | matrix,| 110. \|
|00002bd0| 69 74 65 6d 20 68 69 6c | 62 28 29 2c 20 31 31 31 |item hil|b(), 111|
|00002be0| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00002bf0| 61 6d 70 6c 65 2c 20 31 | 31 31 0d 20 20 5c 69 74 |ample, 1|11. \it|
|00002c00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002c90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ca0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002cb0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002cc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002cd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ce0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002cf0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002d90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002da0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002db0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002dc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002dd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002de0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002df0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002e90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ea0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002eb0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ec0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ed0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ee0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ef0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002f90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002fa0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002fb0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002fc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002fd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002fe0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002ff0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003000| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003040| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003050| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003060| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003070| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003080| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003090| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000030f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003100| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003110| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003120| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003130| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003140| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003150| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003160| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003170| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003180| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003190| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000031f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003200| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003210| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003220| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003230| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003240| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003250| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003260| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003270| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003280| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003290| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000032f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003300| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003310| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003320| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003330| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003340| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003350| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003360| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003370| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003380| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003390| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000033f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003400| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003410| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003420| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003430| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003440| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003450| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003460| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003470| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003480| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003490| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000034f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003500| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003510| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003520| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003530| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003540| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003550| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003560| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003570| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003580| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003590| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000035f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003600| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003610| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003620| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003630| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003640| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003650| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003660| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003670| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003680| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003690| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000036f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003700| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003710| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003720| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003730| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003740| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003750| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003760| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003770| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003780| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003790| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000037f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003800| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003810| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003820| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003830| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003840| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003850| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003860| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003870| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003880| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003890| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000038f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003900| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003910| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003920| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003930| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003940| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003950| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003960| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003970| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003980| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003990| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000039f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003a90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003aa0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003ab0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003ac0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003ad0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003ae0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003af0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b00| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b80| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003b90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003ba0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003bb0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003bc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003bd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003be0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003bf0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00003c00| 78 61 6d 70 6c 65 2c 20 | 31 33 37 0d 20 20 5c 69 |xample, |137. \i|
|00003c10| 74 65 6d 20 6d 69 6e 28 | 29 2c 20 31 33 38 0d 20 |tem min(|), 138. |
|00003c20| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00003c30| 70 6c 65 2c 20 31 33 38 | 0d 20 20 5c 69 74 65 6d |ple, 138|. \item|
|00003c40| 20 6d 69 6e 69 28 29 2c | 20 31 33 39 0d 20 20 20 | mini(),| 139. |
|00003c50| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00003c60| 65 2c 20 31 33 39 0d 20 | 20 5c 69 74 65 6d 20 6d |e, 139. | \item m|
|00003c70| 69 6e 69 6d 75 6d 20 65 | 6c 65 6d 65 6e 74 2c 20 |inimum e|lement, |
|00003c80| 31 33 38 0d 20 20 5c 69 | 74 65 6d 20 6d 6f 64 28 |138. \i|tem mod(|
|00003c90| 29 2c 20 31 34 30 0d 20 | 20 20 20 5c 73 75 62 69 |), 140. | \subi|
|00003ca0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 31 34 30 |tem exam|ple, 140|
|00003cb0| 0d 0d 20 20 5c 69 6e 64 | 65 78 73 70 61 63 65 0d |.. \ind|exspace.|
|00003cc0| 0d 20 20 5c 69 74 65 6d | 20 6e 61 6e 28 29 2c 20 |. \item| nan(), |
|00003cd0| 31 34 31 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |141. |\subitem|
|00003ce0| 20 65 78 61 6d 70 6c 65 | 2c 20 31 34 31 0d 20 20 | example|, 141. |
|00003cf0| 5c 69 74 65 6d 20 6e 61 | 74 75 72 61 6c 20 6c 6f |\item na|tural lo|
|00003d00| 67 61 72 69 74 68 6d 2c | 20 31 32 37 0d 20 20 5c |garithm,| 127. \|
|00003d10| 69 74 65 6d 20 6e 6f 6e | 2d 63 65 6e 74 72 61 6c |item non|-central|
|00003d20| 20 64 69 73 74 72 69 62 | 75 74 69 6f 6e 73 2c 20 | distrib|utions, |
|00003d30| 31 37 38 0d 20 20 5c 69 | 74 65 6d 20 6e 6f 72 6d |178. \i|tem norm|
|00003d40| 28 29 2c 20 31 34 32 0d | 20 20 20 20 5c 73 75 62 |(), 142.| \sub|
|00003d50| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 34 |item exa|mple, 14|
|00003d60| 32 0d 20 20 5c 69 74 65 | 6d 20 6e 6f 72 6d 61 6c |2. \ite|m normal|
|00003d70| 20 64 69 73 74 72 69 62 | 75 74 69 6f 6e 2c 20 31 | distrib|ution, 1|
|00003d80| 37 38 0d 20 20 5c 69 74 | 65 6d 20 6e 6f 74 2d 61 |78. \it|em not-a|
|00003d90| 2d 6e 75 6d 62 65 72 20 | 76 61 6c 75 65 2c 20 31 |-number |value, 1|
|00003da0| 34 31 0d 20 20 5c 69 74 | 65 6d 20 6e 75 6d 32 73 |41. \it|em num2s|
|00003db0| 74 72 28 29 2c 20 31 34 | 33 0d 20 20 20 20 5c 73 |tr(), 14|3. \s|
|00003dc0| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00003dd0| 31 34 33 0d 20 20 5c 69 | 74 65 6d 20 6e 75 6d 62 |143. \i|tem numb|
|00003de0| 65 72 20 74 6f 20 73 74 | 72 69 6e 67 20 63 6f 6e |er to st|ring con|
|00003df0| 76 65 72 73 69 6f 6e 2c | 20 31 34 33 0d 20 20 5c |version,| 143. \|
|00003e00| 69 74 65 6d 20 6e 75 6d | 65 72 69 63 20 66 6f 72 |item num|eric for|
|00003e10| 6d 61 74 74 69 6e 67 2c | 20 31 30 31 0d 0d 20 20 |matting,| 101.. |
|00003e20| 5c 69 6e 64 65 78 73 70 | 61 63 65 0d 0d 20 20 5c |\indexsp|ace.. \|
|00003e30| 69 74 65 6d 20 6f 64 65 | 28 29 2c 20 31 34 34 0d |item ode|(), 144.|
|00003e40| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00003e50| 6d 70 6c 65 2c 20 31 34 | 35 0d 20 20 5c 69 74 65 |mple, 14|5. \ite|
|00003e60| 6d 20 6f 6e 65 73 28 29 | 2c 20 31 34 36 0d 20 20 |m ones()|, 146. |
|00003e70| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00003e80| 6c 65 2c 20 31 34 36 0d | 20 20 5c 69 74 65 6d 20 |le, 146.| \item |
|00003e90| 6f 70 65 6e 28 29 2c 20 | 31 34 37 0d 20 20 20 20 |open(), |147. |
|00003ea0| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00003eb0| 2c 20 31 34 37 0d 20 20 | 5c 69 74 65 6d 20 6f 70 |, 147. |\item op|
|00003ec0| 65 72 61 74 69 6e 67 20 | 73 79 73 74 65 6d 20 61 |erating |system a|
|00003ed0| 63 63 65 73 73 2c 20 32 | 31 38 0d 20 20 5c 69 74 |ccess, 2|18. \it|
|00003ee0| 65 6d 20 6f 72 64 65 72 | 69 6e 67 20 6d 61 74 72 |em order|ing matr|
|00003ef0| 69 78 2c 20 32 30 35 0d | 20 20 5c 69 74 65 6d 20 |ix, 205.| \item |
|00003f00| 6f 72 64 69 6e 61 72 79 | 20 64 69 66 66 65 72 65 |ordinary| differe|
|00003f10| 6e 74 69 61 6c 20 65 71 | 75 61 74 69 6f 6e 20 73 |ntial eq|uation s|
|00003f20| 6f 6c 76 65 72 2c 20 31 | 34 34 0d 20 20 5c 69 74 |olver, 1|44. \it|
|00003f30| 65 6d 20 6f 75 74 70 75 | 74 20 66 6f 72 6d 61 74 |em outpu|t format|
|00003f40| 2c 20 31 30 31 0d 0d 20 | 20 5c 69 6e 64 65 78 73 |, 101.. | \indexs|
|00003f50| 70 61 63 65 0d 0d 20 20 | 5c 69 74 65 6d 20 50 41 |pace.. |\item PA|
|00003f60| 47 45 52 2c 20 35 0d 20 | 20 5c 69 74 65 6d 20 70 |GER, 5. | \item p|
|00003f70| 61 75 73 65 20 70 72 6f | 67 72 61 6d 2c 20 31 34 |ause pro|gram, 14|
|00003f80| 38 0d 20 20 5c 69 74 65 | 6d 20 70 61 75 73 65 28 |8. \ite|m pause(|
|00003f90| 29 2c 20 31 34 38 0d 20 | 20 20 20 5c 73 75 62 69 |), 148. | \subi|
|00003fa0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 31 34 38 |tem exam|ple, 148|
|00003fb0| 0d 20 20 5c 69 74 65 6d | 20 70 63 6c 6f 73 65 28 |. \item| pclose(|
|00003fc0| 29 2c 20 31 34 39 0d 20 | 20 20 20 5c 73 75 62 69 |), 149. | \subi|
|00003fd0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 31 34 39 |tem exam|ple, 149|
|00003fe0| 0d 20 20 5c 69 74 65 6d | 20 70 65 6e 64 28 29 2c |. \item| pend(),|
|00003ff0| 20 31 35 30 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 150. | \subite|
|00004000| 6d 20 65 78 61 6d 70 6c | 65 2c 20 31 35 30 0d 20 |m exampl|e, 150. |
|00004010| 20 5c 69 74 65 6d 20 70 | 6c 61 6c 74 28 29 2c 20 | \item p|lalt(), |
|00004020| 31 35 31 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |151. |\subitem|
|00004030| 20 65 78 61 6d 70 6c 65 | 2c 20 31 35 31 0d 20 20 | example|, 151. |
|00004040| 5c 69 74 65 6d 20 70 6c | 61 73 70 65 63 74 28 29 |\item pl|aspect()|
|00004050| 2c 20 31 35 32 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 152. | \subit|
|00004060| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 31 35 32 0d |em examp|le, 152.|
|00004070| 20 20 5c 69 74 65 6d 20 | 70 6c 61 78 69 73 28 29 | \item |plaxis()|
|00004080| 2c 20 31 35 33 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 153. | \subit|
|00004090| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 31 35 33 0d |em examp|le, 153.|
|000040a0| 20 20 5c 69 74 65 6d 20 | 70 6c 61 7a 28 29 2c 20 | \item |plaz(), |
|000040b0| 31 35 34 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |154. |\subitem|
|000040c0| 20 65 78 61 6d 70 6c 65 | 2c 20 31 35 34 0d 20 20 | example|, 154. |
|000040d0| 5c 69 74 65 6d 20 70 6c | 65 67 65 6e 64 28 29 2c |\item pl|egend(),|
|000040e0| 20 31 35 35 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 155. | \subite|
|000040f0| 6d 20 65 78 61 6d 70 6c | 65 2c 20 31 35 35 0d 20 |m exampl|e, 155. |
|00004100| 20 5c 69 74 65 6d 20 70 | 6c 67 72 69 64 28 29 2c | \item p|lgrid(),|
|00004110| 20 31 35 36 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 156. | \subite|
|00004120| 6d 20 65 78 61 6d 70 6c | 65 2c 20 31 35 36 0d 20 |m exampl|e, 156. |
|00004130| 20 5c 69 74 65 6d 20 70 | 6c 67 72 69 64 33 28 29 | \item p|lgrid3()|
|00004140| 2c 20 31 35 37 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 157. | \subit|
|00004150| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 31 35 37 0d |em examp|le, 157.|
|00004160| 20 20 5c 69 74 65 6d 20 | 70 6c 68 69 73 74 28 29 | \item |plhist()|
|00004170| 2c 20 31 35 38 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 158. | \subit|
|00004180| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 31 35 38 0d |em examp|le, 158.|
|00004190| 20 20 5c 69 74 65 6d 20 | 70 6c 68 69 73 74 78 28 | \item |plhistx(|
|000041a0| 29 2c 20 31 35 39 0d 20 | 20 20 20 5c 73 75 62 69 |), 159. | \subi|
|000041b0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 31 35 39 |tem exam|ple, 159|
|000041c0| 0d 20 20 5c 69 74 65 6d | 20 70 6c 68 6f 6c 64 28 |. \item| plhold(|
|000041d0| 29 2c 20 31 36 30 0d 20 | 20 20 20 5c 73 75 62 69 |), 160. | \subi|
|000041e0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 31 36 30 |tem exam|ple, 160|
|000041f0| 0d 20 20 5c 69 74 65 6d | 20 70 6c 68 6f 6c 64 5c |. \item| plhold\|
|00004200| 5f 6f 66 66 28 29 2c 20 | 31 36 31 0d 20 20 20 20 |_off(), |161. |
|00004210| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00004220| 2c 20 31 36 31 0d 20 20 | 5c 69 74 65 6d 20 70 6c |, 161. |\item pl|
|00004230| 69 6d 69 74 73 28 29 2c | 20 31 36 32 0d 20 20 20 |imits(),| 162. |
|00004240| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00004250| 65 2c 20 31 36 32 0d 20 | 20 5c 69 74 65 6d 20 70 |e, 162. | \item p|
|00004260| 6c 6d 65 73 68 28 29 2c | 20 31 36 33 0d 20 20 20 |lmesh(),| 163. |
|00004270| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00004280| 65 2c 20 31 36 33 0d 20 | 20 5c 69 74 65 6d 20 70 |e, 163. | \item p|
|00004290| 6c 6f 74 20 77 69 6e 64 | 6f 77 0d 20 20 20 20 5c |lot wind|ow. \|
|000042a0| 73 75 62 69 74 65 6d 20 | 63 6c 6f 73 69 6e 67 2c |subitem |closing,|
|000042b0| 20 31 34 39 0d 20 20 5c | 69 74 65 6d 20 70 6c 6f | 149. \|item plo|
|000042c0| 74 20 77 69 6e 64 6f 77 | 73 0d 20 20 20 20 5c 73 |t window|s. \s|
|000042d0| 75 62 69 74 65 6d 20 63 | 6c 6f 73 69 6e 67 20 61 |ubitem c|losing a|
|000042e0| 6c 6c 2c 20 31 35 30 0d | 20 20 5c 69 74 65 6d 20 |ll, 150.| \item |
|000042f0| 70 6c 6f 74 28 29 2c 20 | 31 36 34 0d 20 20 20 20 |plot(), |164. |
|00004300| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00004310| 2c 20 31 36 34 0d 20 20 | 5c 69 74 65 6d 20 70 6c |, 164. |\item pl|
|00004320| 6f 74 33 28 29 2c 20 31 | 36 35 0d 20 20 20 20 5c |ot3(), 1|65. \|
|00004330| 73 75 62 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 2c |subitem |example,|
|00004340| 20 31 36 35 0d 20 20 5c | 69 74 65 6d 20 70 6c 6f | 165. \|item plo|
|00004350| 74 74 69 6e 67 2c 20 34 | 35 2d 2d 34 36 0d 20 20 |tting, 4|5--46. |
|00004360| 20 20 5c 73 75 62 69 74 | 65 6d 20 63 72 65 61 74 | \subit|em creat|
|00004370| 69 6e 67 20 77 69 6e 64 | 6f 77 2c 20 31 37 34 0d |ing wind|ow, 174.|
|00004380| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 73 74 61 | \sub|item sta|
|00004390| 74 75 73 2c 20 31 39 37 | 0d 20 20 20 20 5c 73 75 |tus, 197|. \su|
|000043a0| 62 69 74 65 6d 20 76 69 | 65 77 69 6e 67 20 61 6c |bitem vi|ewing al|
|000043b0| 74 69 74 75 64 65 2c 20 | 31 35 31 0d 20 20 20 20 |titude, |151. |
|000043c0| 5c 73 75 62 69 74 65 6d | 20 78 20 61 78 69 73 20 |\subitem| x axis |
|000043d0| 6c 61 62 65 6c 73 2c 20 | 32 33 37 0d 20 20 20 20 |labels, |237. |
|000043e0| 5c 73 75 62 69 74 65 6d | 20 79 20 61 78 69 73 20 |\subitem| y axis |
|000043f0| 6c 61 62 65 6c 73 2c 20 | 32 33 38 0d 20 20 20 20 |labels, |238. |
|00004400| 5c 73 75 62 69 74 65 6d | 20 7a 20 61 78 69 73 20 |\subitem| z axis |
|00004410| 6c 61 62 65 6c 73 2c 20 | 32 34 30 0d 20 20 5c 69 |labels, |240. \i|
|00004420| 74 65 6d 20 70 6c 70 72 | 69 6e 74 28 29 2c 20 31 |tem plpr|int(), 1|
|00004430| 36 36 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |66. \|subitem |
|00004440| 65 78 61 6d 70 6c 65 2c | 20 31 36 36 0d 20 20 5c |example,| 166. \|
|00004450| 69 74 65 6d 20 70 6c 70 | 74 65 78 28 29 2c 20 31 |item plp|tex(), 1|
|00004460| 36 37 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |67. \|subitem |
|00004470| 65 78 61 6d 70 6c 65 2c | 20 31 36 37 0d 20 20 5c |example,| 167. \|
|00004480| 69 74 65 6d 20 70 6c 73 | 74 79 6c 65 28 29 2c 20 |item pls|tyle(), |
|00004490| 31 36 38 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |168. |\subitem|
|000044a0| 20 65 78 61 6d 70 6c 65 | 2c 20 31 36 38 0d 20 20 | example|, 168. |
|000044b0| 5c 69 74 65 6d 20 70 6c | 77 69 64 28 29 2c 20 31 |\item pl|wid(), 1|
|000044c0| 36 39 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |69. \|subitem |
|000044d0| 65 78 61 6d 70 6c 65 2c | 20 31 36 39 0d 20 20 5c |example,| 169. \|
|000044e0| 69 74 65 6d 20 50 6f 69 | 73 73 6f 6e 20 64 69 73 |item Poi|sson dis|
|000044f0| 74 72 69 62 75 74 69 6f | 6e 2c 20 31 37 38 0d 20 |tributio|n, 178. |
|00004500| 20 5c 69 74 65 6d 20 70 | 72 65 74 74 79 20 70 72 | \item p|retty pr|
|00004510| 69 6e 74 20 61 20 6d 61 | 74 72 69 78 2c 20 31 37 |int a ma|trix, 17|
|00004520| 32 0d 20 20 5c 69 74 65 | 6d 20 70 72 69 6e 74 66 |2. \ite|m printf|
|00004530| 28 29 2c 20 31 37 30 0d | 20 20 20 20 5c 73 75 62 |(), 170.| \sub|
|00004540| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 37 |item exa|mple, 17|
|00004550| 31 0d 20 20 5c 69 74 65 | 6d 20 70 72 69 6e 74 6d |1. \ite|m printm|
|00004560| 61 74 28 29 2c 20 31 37 | 32 0d 20 20 20 20 5c 73 |at(), 17|2. \s|
|00004570| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00004580| 31 37 32 0d 20 20 5c 69 | 74 65 6d 20 70 72 6f 64 |172. \i|tem prod|
|00004590| 28 29 2c 20 31 37 33 0d | 20 20 20 20 5c 73 75 62 |(), 173.| \sub|
|000045a0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 37 |item exa|mple, 17|
|000045b0| 33 0d 20 20 5c 69 74 65 | 6d 20 70 72 6f 64 75 63 |3. \ite|m produc|
|000045c0| 74 20 6f 66 20 6d 61 74 | 72 69 78 20 65 6c 65 6d |t of mat|rix elem|
|000045d0| 65 6e 74 73 2c 20 31 37 | 33 0d 20 20 5c 69 74 65 |ents, 17|3. \ite|
|000045e0| 6d 20 70 73 74 61 72 74 | 28 29 2c 20 31 37 34 0d |m pstart|(), 174.|
|000045f0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00004600| 6d 70 6c 65 2c 20 31 37 | 34 0d 20 20 5c 69 74 65 |mple, 17|4. \ite|
|00004610| 6d 20 70 74 69 74 6c 65 | 28 29 2c 20 31 37 35 0d |m ptitle|(), 175.|
|00004620| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00004630| 6d 70 6c 65 2c 20 31 37 | 35 0d 20 20 5c 69 74 65 |mple, 17|5. \ite|
|00004640| 6d 20 70 77 69 6e 28 29 | 2c 20 31 37 36 0d 20 20 |m pwin()|, 176. |
|00004650| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00004660| 6c 65 2c 20 31 37 36 0d | 0d 20 20 5c 69 6e 64 65 |le, 176.|. \inde|
|00004670| 78 73 70 61 63 65 0d 0d | 20 20 5c 69 74 65 6d 20 |xspace..| \item |
|00004680| 51 52 20 64 65 63 6f 6d | 70 6f 73 69 74 69 6f 6e |QR decom|position|
|00004690| 2c 20 31 37 37 0d 20 20 | 5c 69 74 65 6d 20 71 72 |, 177. |\item qr|
|000046a0| 28 29 2c 20 31 37 37 0d | 20 20 20 20 5c 73 75 62 |(), 177.| \sub|
|000046b0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 37 |item exa|mple, 17|
|000046c0| 37 0d 0d 20 20 5c 69 6e | 64 65 78 73 70 61 63 65 |7.. \in|dexspace|
|000046d0| 0d 0d 20 20 5c 69 74 65 | 6d 20 72 61 69 73 65 20 |.. \ite|m raise |
|000046e0| 61 6e 20 65 72 72 6f 72 | 2c 20 38 37 0d 20 20 5c |an error|, 87. \|
|000046f0| 69 74 65 6d 20 72 61 6e | 64 28 29 2c 20 31 37 38 |item ran|d(), 178|
|00004700| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00004710| 61 6d 70 6c 65 2c 20 31 | 37 39 0d 20 20 5c 69 74 |ample, 1|79. \it|
|00004720| 65 6d 20 72 61 6e 64 6f | 6d 20 73 65 65 64 2c 20 |em rando|m seed, |
|00004730| 32 30 39 0d 20 20 5c 69 | 74 65 6d 20 72 61 6e 64 |209. \i|tem rand|
|00004740| 6f 6d 20 76 61 6c 75 65 | 73 2c 20 31 37 38 0d 20 |om value|s, 178. |
|00004750| 20 5c 69 74 65 6d 20 72 | 61 6e 6b 20 6f 66 20 61 | \item r|ank of a|
|00004760| 20 6d 61 74 72 69 78 2c | 20 31 38 30 0d 20 20 5c | matrix,| 180. \|
|00004770| 69 74 65 6d 20 72 61 6e | 6b 28 29 2c 20 31 38 30 |item ran|k(), 180|
|00004780| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00004790| 61 6d 70 6c 65 2c 20 31 | 38 30 0d 20 20 5c 69 74 |ample, 1|80. \it|
|000047a0| 65 6d 20 72 63 6f 6e 64 | 28 29 2c 20 31 38 31 0d |em rcond|(), 181.|
|000047b0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|000047c0| 6d 70 6c 65 2c 20 31 38 | 31 0d 20 20 5c 69 74 65 |mple, 18|1. \ite|
|000047d0| 6d 20 72 65 61 64 20 62 | 69 6e 61 72 79 20 64 61 |m read b|inary da|
|000047e0| 74 61 20 66 72 6f 6d 20 | 66 69 6c 65 2c 20 31 38 |ta from |file, 18|
|000047f0| 33 0d 20 20 5c 69 74 65 | 6d 20 72 65 61 64 20 6d |3. \ite|m read m|
|00004800| 61 74 72 69 78 20 66 72 | 6f 6d 20 66 69 6c 65 2c |atrix fr|om file,|
|00004810| 20 31 38 34 0d 20 20 5c | 69 74 65 6d 20 72 65 61 | 184. \|item rea|
|00004820| 64 20 73 63 61 6c 61 72 | 73 20 61 6e 64 20 74 65 |d scalar|s and te|
|00004830| 78 74 2c 20 31 30 38 0d | 20 20 5c 69 74 65 6d 20 |xt, 108.| \item |
|00004840| 72 65 61 64 20 74 69 6d | 65 72 2c 20 32 32 33 0d |read tim|er, 223.|
|00004850| 20 20 5c 69 74 65 6d 20 | 72 65 61 64 28 29 2c 20 | \item |read(), |
|00004860| 31 38 32 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |182. |\subitem|
|00004870| 20 65 78 61 6d 70 6c 65 | 2c 20 31 38 32 0d 20 20 | example|, 182. |
|00004880| 5c 69 74 65 6d 20 72 65 | 61 64 62 28 29 2c 20 31 |\item re|adb(), 1|
|00004890| 38 33 0d 20 20 5c 69 74 | 65 6d 20 72 65 61 64 69 |83. \it|em readi|
|000048a0| 6e 67 20 69 6e 70 75 74 | 2c 20 31 30 38 0d 20 20 |ng input|, 108. |
|000048b0| 5c 69 74 65 6d 20 72 65 | 61 64 6d 28 29 2c 20 31 |\item re|adm(), 1|
|000048c0| 38 34 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |84. \|subitem |
|000048d0| 65 78 61 6d 70 6c 65 2c | 20 31 38 33 2c 20 31 38 |example,| 183, 18|
|000048e0| 34 0d 20 20 5c 69 74 65 | 6d 20 72 65 61 6c 20 70 |4. \ite|m real p|
|000048f0| 61 72 74 2c 20 31 38 35 | 0d 20 20 5c 69 74 65 6d |art, 185|. \item|
|00004900| 20 72 65 61 6c 28 29 2c | 20 31 38 35 0d 20 20 20 | real(),| 185. |
|00004910| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00004920| 65 2c 20 31 38 35 0d 20 | 20 5c 69 74 65 6d 20 72 |e, 185. | \item r|
|00004930| 65 64 69 74 28 29 2c 20 | 31 38 36 0d 20 20 20 20 |edit(), |186. |
|00004940| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00004950| 2c 20 31 38 36 0d 20 20 | 5c 69 74 65 6d 20 72 65 |, 186. |\item re|
|00004960| 6d 61 69 6e 64 65 72 20 | 61 66 74 65 72 20 64 69 |mainder |after di|
|00004970| 76 69 73 69 6f 6e 2c 20 | 31 34 30 0d 20 20 5c 69 |vision, |140. \i|
|00004980| 74 65 6d 20 72 65 70 6c | 6f 74 28 29 2c 20 31 38 |tem repl|ot(), 18|
|00004990| 37 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 65 |7. \s|ubitem e|
|000049a0| 78 61 6d 70 6c 65 2c 20 | 31 38 37 0d 20 20 5c 69 |xample, |187. \i|
|000049b0| 74 65 6d 20 72 65 73 68 | 61 70 65 20 6d 61 74 72 |tem resh|ape matr|
|000049c0| 69 78 2c 20 31 38 38 0d | 20 20 5c 69 74 65 6d 20 |ix, 188.| \item |
|000049d0| 72 65 73 68 61 70 65 28 | 29 2c 20 31 38 38 0d 20 |reshape(|), 188. |
|000049e0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|000049f0| 70 6c 65 2c 20 31 38 38 | 0d 20 20 5c 69 74 65 6d |ple, 188|. \item|
|00004a00| 20 72 66 69 6c 65 0d 20 | 20 20 20 5c 73 75 62 69 | rfile. | \subi|
|00004a10| 74 65 6d 20 65 64 69 74 | 69 6e 67 2c 20 31 38 36 |tem edit|ing, 186|
|00004a20| 0d 20 20 5c 69 74 65 6d | 20 52 4c 41 42 5c 5f 48 |. \item| RLAB\_H|
|00004a30| 45 4c 50 5c 5f 44 49 52 | 2c 20 35 0d 20 20 5c 69 |ELP\_DIR|, 5. \i|
|00004a40| 74 65 6d 20 52 4c 41 42 | 5c 5f 4c 49 42 5c 5f 44 |tem RLAB|\_LIB\_D|
|00004a50| 49 52 2c 20 35 0d 20 20 | 5c 69 74 65 6d 20 52 4c |IR, 5. |\item RL|
|00004a60| 41 42 5c 5f 50 41 47 45 | 52 2c 20 35 0d 20 20 5c |AB\_PAGE|R, 5. \|
|00004a70| 69 74 65 6d 20 52 4c 41 | 42 5c 5f 52 43 30 2c 20 |item RLA|B\_RC0, |
|00004a80| 35 0d 20 20 5c 69 74 65 | 6d 20 52 4c 41 42 5c 5f |5. \ite|m RLAB\_|
|00004a90| 53 45 41 52 43 48 5c 5f | 50 41 54 48 2c 20 35 0d |SEARCH\_|PATH, 5.|
|00004aa0| 20 20 5c 69 74 65 6d 20 | 72 6f 75 6e 64 20 64 6f | \item |round do|
|00004ab0| 77 6e 2c 20 31 30 30 0d | 20 20 5c 69 74 65 6d 20 |wn, 100.| \item |
|00004ac0| 72 6f 75 6e 64 20 6f 66 | 66 20 76 61 6c 75 65 2c |round of|f value,|
|00004ad0| 20 31 38 39 0d 20 20 5c | 69 74 65 6d 20 72 6f 75 | 189. \|item rou|
|00004ae0| 6e 64 20 74 6f 77 61 72 | 64 73 20 7a 65 72 6f 2c |nd towar|ds zero,|
|00004af0| 20 39 39 0d 20 20 5c 69 | 74 65 6d 20 72 6f 75 6e | 99. \i|tem roun|
|00004b00| 64 20 75 70 2c 20 36 32 | 0d 20 20 5c 69 74 65 6d |d up, 62|. \item|
|00004b10| 20 72 6f 75 6e 64 28 29 | 2c 20 31 38 39 0d 20 20 | round()|, 189. |
|00004b20| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00004b30| 6c 65 2c 20 31 38 39 0d | 0d 20 20 5c 69 6e 64 65 |le, 189.|. \inde|
|00004b40| 78 73 70 61 63 65 0d 0d | 20 20 5c 69 74 65 6d 20 |xspace..| \item |
|00004b50| 73 61 76 65 28 29 2c 20 | 31 39 30 0d 20 20 20 20 |save(), |190. |
|00004b60| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00004b70| 2c 20 31 39 30 0d 20 20 | 5c 69 74 65 6d 20 73 63 |, 190. |\item sc|
|00004b80| 61 6c 61 72 2c 20 39 2d | 2d 31 30 0d 20 20 20 20 |alar, 9-|-10. |
|00004b90| 5c 73 75 62 69 74 65 6d | 20 63 6f 6d 70 6c 65 78 |\subitem| complex|
|00004ba0| 20 63 6f 6e 6a 75 67 61 | 74 65 2c 20 37 31 0d 20 | conjuga|te, 71. |
|00004bb0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 63 6f 6e 76 | \subi|tem conv|
|00004bc0| 65 72 73 69 6f 6e 20 66 | 72 6f 6d 20 73 74 72 69 |ersion f|rom stri|
|00004bd0| 6e 67 2c 20 32 31 32 0d | 20 20 20 20 5c 73 75 62 |ng, 212.| \sub|
|00004be0| 69 74 65 6d 20 65 78 70 | 6f 6e 65 6e 74 69 61 6c |item exp|onential|
|00004bf0| 2c 20 39 30 0d 20 20 5c | 69 74 65 6d 20 73 63 61 |, 90. \|item sca|
|00004c00| 6c 61 72 20 63 6f 6e 76 | 65 72 73 69 6f 6e 2c 20 |lar conv|ersion, |
|00004c10| 31 39 31 0d 20 20 5c 69 | 74 65 6d 20 73 63 61 6c |191. \i|tem scal|
|00004c20| 61 72 28 29 2c 20 31 39 | 31 0d 20 20 20 20 5c 73 |ar(), 19|1. \s|
|00004c30| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00004c40| 31 39 31 0d 20 20 5c 69 | 74 65 6d 20 73 63 61 6c |191. \i|tem scal|
|00004c50| 61 72 73 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |ars. |\subitem|
|00004c60| 20 6f 75 74 70 75 74 2c | 20 31 30 32 0d 20 20 5c | output,| 102. \|
|00004c70| 69 74 65 6d 20 73 63 68 | 6f 72 64 28 29 2c 20 31 |item sch|ord(), 1|
|00004c80| 39 32 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |92. \|subitem |
|00004c90| 65 78 61 6d 70 6c 65 2c | 20 31 39 32 0d 20 20 5c |example,| 192. \|
|00004ca0| 69 74 65 6d 20 53 63 68 | 75 72 20 64 65 63 6f 6d |item Sch|ur decom|
|00004cb0| 70 6f 73 69 74 69 6f 6e | 2c 20 31 39 32 2c 20 31 |position|, 192, 1|
|00004cc0| 39 33 0d 20 20 5c 69 74 | 65 6d 20 73 63 68 75 72 |93. \it|em schur|
|00004cd0| 28 29 2c 20 31 39 33 0d | 20 20 20 20 5c 73 75 62 |(), 193.| \sub|
|00004ce0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 31 39 |item exa|mple, 19|
|00004cf0| 33 0d 20 20 5c 69 74 65 | 6d 20 73 63 6f 70 65 20 |3. \ite|m scope |
|00004d00| 6f 66 20 61 20 66 75 6e | 63 74 69 6f 6e 27 73 20 |of a fun|ction's |
|00004d10| 61 72 67 75 6d 65 6e 74 | 73 2c 20 31 30 34 0d 20 |argument|s, 104. |
|00004d20| 20 5c 69 74 65 6d 20 73 | 65 65 64 0d 20 20 20 20 | \item s|eed. |
|00004d30| 5c 73 75 62 69 74 65 6d | 20 73 65 74 74 69 6e 67 |\subitem| setting|
|00004d40| 2c 20 32 30 39 0d 20 20 | 5c 69 74 65 6d 20 73 65 |, 209. |\item se|
|00004d50| 74 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 63 |t. \s|ubitem c|
|00004d60| 6f 6d 70 6c 65 6d 65 6e | 74 2c 20 37 30 0d 20 20 |omplemen|t, 70. |
|00004d70| 20 20 5c 73 75 62 69 74 | 65 6d 20 63 72 65 61 74 | \subit|em creat|
|00004d80| 69 6f 6e 2c 20 31 39 34 | 0d 20 20 20 20 5c 73 75 |ion, 194|. \su|
|00004d90| 62 69 74 65 6d 20 69 6e | 74 65 72 73 65 63 74 69 |bitem in|tersecti|
|00004da0| 6f 6e 2c 20 31 31 38 0d | 20 20 20 20 5c 73 75 62 |on, 118.| \sub|
|00004db0| 69 74 65 6d 20 75 6e 69 | 6f 6e 2c 20 32 32 38 0d |item uni|on, 228.|
|00004dc0| 20 20 5c 69 74 65 6d 20 | 73 65 74 28 29 2c 20 31 | \item |set(), 1|
|00004dd0| 39 34 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |94. \|subitem |
|00004de0| 65 78 61 6d 70 6c 65 2c | 20 31 39 34 0d 20 20 5c |example,| 194. \|
|00004df0| 69 74 65 6d 20 73 68 65 | 6c 6c 69 6e 67 20 6f 75 |item she|lling ou|
|00004e00| 74 2c 20 32 31 38 0d 20 | 20 5c 69 74 65 6d 20 73 |t, 218. | \item s|
|00004e10| 68 6f 77 28 29 2c 20 31 | 39 35 0d 20 20 20 20 5c |how(), 1|95. \|
|00004e20| 73 75 62 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 2c |subitem |example,|
|00004e30| 20 31 39 35 0d 20 20 5c | 69 74 65 6d 20 73 68 6f | 195. \|item sho|
|00004e40| 77 70 77 69 6e 28 29 2c | 20 31 39 37 0d 20 20 20 |wpwin(),| 197. |
|00004e50| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00004e60| 65 2c 20 31 39 37 0d 20 | 20 5c 69 74 65 6d 20 73 |e, 197. | \item s|
|00004e70| 69 67 6e 20 6f 66 20 61 | 72 67 75 6d 65 6e 74 2c |ign of a|rgument,|
|00004e80| 20 31 39 38 0d 20 20 5c | 69 74 65 6d 20 73 69 67 | 198. \|item sig|
|00004e90| 6e 28 29 2c 20 31 39 38 | 0d 20 20 20 20 5c 73 75 |n(), 198|. \su|
|00004ea0| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 31 |bitem ex|ample, 1|
|00004eb0| 39 38 0d 20 20 5c 69 74 | 65 6d 20 73 69 6d 69 6c |98. \it|em simil|
|00004ec0| 61 72 20 6d 61 74 72 69 | 63 65 73 2c 20 31 31 30 |ar matri|ces, 110|
|00004ed0| 0d 20 20 5c 69 74 65 6d | 20 73 69 6e 28 29 2c 20 |. \item| sin(), |
|00004ee0| 31 39 39 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |199. |\subitem|
|00004ef0| 20 65 78 61 6d 70 6c 65 | 2c 20 31 39 39 0d 20 20 | example|, 199. |
|00004f00| 5c 69 74 65 6d 20 73 69 | 6e 65 2c 20 31 39 39 0d |\item si|ne, 199.|
|00004f10| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 68 79 70 | \sub|item hyp|
|00004f20| 65 72 62 6f 6c 69 63 2c | 20 32 30 30 0d 20 20 20 |erbolic,| 200. |
|00004f30| 20 5c 73 75 62 69 74 65 | 6d 20 68 79 70 65 72 62 | \subite|m hyperb|
|00004f40| 6f 6c 69 63 20 69 6e 76 | 65 72 73 65 2c 20 35 34 |olic inv|erse, 54|
|00004f50| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 69 6e |. \su|bitem in|
|00004f60| 76 65 72 73 65 2c 20 35 | 33 0d 20 20 5c 69 74 65 |verse, 5|3. \ite|
|00004f70| 6d 20 73 69 6e 67 75 6c | 61 72 20 76 61 6c 75 65 |m singul|ar value|
|00004f80| 20 64 65 63 6f 6d 70 6f | 73 69 74 69 6f 6e 2c 20 | decompo|sition, |
|00004f90| 32 31 34 0d 20 20 5c 69 | 74 65 6d 20 73 69 6e 68 |214. \i|tem sinh|
|00004fa0| 28 29 2c 20 32 30 30 0d | 20 20 20 20 5c 73 75 62 |(), 200.| \sub|
|00004fb0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 32 30 |item exa|mple, 20|
|00004fc0| 30 0d 20 20 5c 69 74 65 | 6d 20 73 69 7a 65 0d 20 |0. \ite|m size. |
|00004fd0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00004fe0| 70 6c 65 2c 20 32 30 31 | 0d 20 20 5c 69 74 65 6d |ple, 201|. \item|
|00004ff0| 20 73 69 7a 65 20 6f 66 | 20 61 72 67 75 6d 65 6e | size of| argumen|
|00005000| 74 2c 20 32 30 31 0d 20 | 20 5c 69 74 65 6d 20 73 |t, 201. | \item s|
|00005010| 69 7a 65 28 29 2c 20 32 | 30 31 0d 20 20 5c 69 74 |ize(), 2|01. \it|
|00005020| 65 6d 20 73 69 7a 65 6f | 66 28 29 2c 20 32 30 32 |em sizeo|f(), 202|
|00005030| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00005040| 61 6d 70 6c 65 2c 20 32 | 30 32 0d 20 20 5c 69 74 |ample, 2|02. \it|
|00005050| 65 6d 20 73 6f 6c 75 74 | 69 6f 6e 0d 20 20 20 20 |em solut|ion. |
|00005060| 5c 73 75 62 69 74 65 6d | 20 64 69 66 66 65 72 65 |\subitem| differe|
|00005070| 6e 74 69 61 6c 20 65 71 | 75 61 74 69 6f 6e 73 2c |ntial eq|uations,|
|00005080| 20 31 34 34 0d 20 20 5c | 69 74 65 6d 20 73 6f 6c | 144. \|item sol|
|00005090| 75 74 69 6f 6e 20 6f 66 | 20 6c 69 6e 65 61 72 20 |ution of| linear |
|000050a0| 65 71 75 61 74 69 6f 6e | 73 2c 20 35 38 2c 20 32 |equation|s, 58, 2|
|000050b0| 30 33 0d 20 20 5c 69 74 | 65 6d 20 73 6f 6c 76 65 |03. \it|em solve|
|000050c0| 28 29 2c 20 32 30 33 0d | 20 20 20 20 5c 73 75 62 |(), 203.| \sub|
|000050d0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 32 30 |item exa|mple, 20|
|000050e0| 33 0d 20 20 5c 69 74 65 | 6d 20 73 6f 72 74 20 6d |3. \ite|m sort m|
|000050f0| 61 74 72 69 78 2c 20 32 | 30 35 0d 20 20 5c 69 74 |atrix, 2|05. \it|
|00005100| 65 6d 20 73 6f 72 74 28 | 29 2c 20 32 30 35 0d 20 |em sort(|), 205. |
|00005110| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|00005120| 70 6c 65 2c 20 32 30 35 | 0d 20 20 5c 69 74 65 6d |ple, 205|. \item|
|00005130| 20 73 70 6c 69 74 20 61 | 20 73 74 72 69 6e 67 2c | split a| string,|
|00005140| 20 32 31 31 0d 20 20 5c | 69 74 65 6d 20 73 70 72 | 211. \|item spr|
|00005150| 69 6e 74 66 28 29 2c 20 | 32 30 36 0d 20 20 20 20 |intf(), |206. |
|00005160| 5c 73 75 62 69 74 65 6d | 20 65 78 61 6d 70 6c 65 |\subitem| example|
|00005170| 2c 20 32 30 37 0d 20 20 | 5c 69 74 65 6d 20 73 71 |, 207. |\item sq|
|00005180| 72 74 28 29 2c 20 32 30 | 38 0d 20 20 20 20 5c 73 |rt(), 20|8. \s|
|00005190| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|000051a0| 32 30 38 0d 20 20 5c 69 | 74 65 6d 20 73 71 75 61 |208. \i|tem squa|
|000051b0| 72 65 20 72 6f 6f 74 2c | 20 32 30 38 0d 20 20 5c |re root,| 208. \|
|000051c0| 69 74 65 6d 20 73 72 61 | 6e 64 28 29 2c 20 32 30 |item sra|nd(), 20|
|000051d0| 39 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 65 |9. \s|ubitem e|
|000051e0| 78 61 6d 70 6c 65 2c 20 | 32 30 39 0d 20 20 5c 69 |xample, |209. \i|
|000051f0| 74 65 6d 20 73 74 61 6e | 64 61 72 64 20 64 65 76 |tem stan|dard dev|
|00005200| 69 61 74 69 6f 6e 2c 20 | 32 31 30 0d 20 20 5c 69 |iation, |210. \i|
|00005210| 74 65 6d 20 73 74 61 6e | 64 61 72 64 20 69 6e 70 |tem stan|dard inp|
|00005220| 75 74 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |ut. \|subitem |
|00005230| 72 65 61 64 69 6e 67 20 | 66 72 6f 6d 2c 20 31 30 |reading |from, 10|
|00005240| 38 0d 20 20 5c 69 74 65 | 6d 20 73 74 61 72 74 20 |8. \ite|m start |
|00005250| 74 69 6d 65 72 2c 20 32 | 32 31 0d 20 20 5c 69 74 |timer, 2|21. \it|
|00005260| 65 6d 20 73 74 61 72 74 | 69 6e 67 20 5c 52 4c 61 |em start|ing \RLa|
|00005270| 42 5c 20 2c 20 33 0d 20 | 20 5c 69 74 65 6d 20 73 |B\ , 3. | \item s|
|00005280| 74 61 74 75 73 20 6f 66 | 20 70 6c 6f 74 2c 20 31 |tatus of| plot, 1|
|00005290| 39 37 0d 20 20 5c 69 74 | 65 6d 20 73 74 64 28 29 |97. \it|em std()|
|000052a0| 2c 20 32 31 30 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 210. | \subit|
|000052b0| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 32 31 30 0d |em examp|le, 210.|
|000052c0| 20 20 5c 69 74 65 6d 20 | 73 74 72 69 6e 67 0d 20 | \item |string. |
|000052d0| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 63 6f 6e 76 | \subi|tem conv|
|000052e0| 65 72 73 69 6f 6e 20 74 | 6f 20 73 63 61 6c 61 72 |ersion t|o scalar|
|000052f0| 2c 20 32 31 32 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 212. | \subit|
|00005300| 65 6d 20 72 65 6c 61 74 | 69 6f 6e 61 6c 20 74 65 |em relat|ional te|
|00005310| 73 74 73 2c 20 32 32 0d | 20 20 5c 69 74 65 6d 20 |sts, 22.| \item |
|00005320| 73 74 72 69 6e 67 73 2c | 20 32 31 2d 2d 32 33 0d |strings,| 21--23.|
|00005330| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 61 73 73 | \sub|item ass|
|00005340| 69 67 6e 6d 65 6e 74 2c | 20 32 32 0d 20 20 20 20 |ignment,| 22. |
|00005350| 5c 73 75 62 69 74 65 6d | 20 63 6f 6e 63 61 74 65 |\subitem| concate|
|00005360| 6e 61 74 69 6f 6e 2c 20 | 32 32 0d 20 20 20 20 5c |nation, |22. \|
|00005370| 73 75 62 69 74 65 6d 20 | 66 6f 72 6d 61 74 74 65 |subitem |formatte|
|00005380| 64 2c 20 32 33 0d 20 20 | 20 20 5c 73 75 62 69 74 |d, 23. | \subit|
|00005390| 65 6d 20 66 75 6e 63 74 | 69 6f 6e 73 2c 20 32 33 |em funct|ions, 23|
|000053a0| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 6f 75 |. \su|bitem ou|
|000053b0| 74 70 75 74 2c 20 31 30 | 32 0d 20 20 20 20 5c 73 |tput, 10|2. \s|
|000053c0| 75 62 69 74 65 6d 20 73 | 70 6c 69 74 74 69 6e 67 |ubitem s|plitting|
|000053d0| 2c 20 32 31 31 0d 20 20 | 5c 69 74 65 6d 20 73 74 |, 211. |\item st|
|000053e0| 72 73 70 6c 74 28 29 2c | 20 32 31 31 0d 20 20 20 |rsplt(),| 211. |
|000053f0| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00005400| 65 2c 20 32 31 31 0d 20 | 20 5c 69 74 65 6d 20 73 |e, 211. | \item s|
|00005410| 74 72 74 6f 64 28 29 2c | 20 32 31 32 0d 20 20 20 |trtod(),| 212. |
|00005420| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|00005430| 65 2c 20 32 31 32 0d 20 | 20 5c 69 74 65 6d 20 73 |e, 212. | \item s|
|00005440| 75 6d 28 29 2c 20 32 31 | 33 0d 20 20 20 20 5c 73 |um(), 21|3. \s|
|00005450| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00005460| 32 31 33 0d 20 20 5c 69 | 74 65 6d 20 73 75 6d 6d |213. \i|tem summ|
|00005470| 61 74 69 6f 6e 20 6f 66 | 20 65 6c 65 6d 65 6e 74 |ation of| element|
|00005480| 73 2c 20 32 31 33 0d 20 | 20 5c 69 74 65 6d 20 73 |s, 213. | \item s|
|00005490| 76 64 28 29 2c 20 32 31 | 34 0d 20 20 20 20 5c 73 |vd(), 21|4. \s|
|000054a0| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|000054b0| 32 31 34 0d 20 20 5c 69 | 74 65 6d 20 73 79 6c 76 |214. \i|tem sylv|
|000054c0| 28 29 2c 20 32 31 36 0d | 20 20 20 20 5c 73 75 62 |(), 216.| \sub|
|000054d0| 69 74 65 6d 20 65 78 61 | 6d 70 6c 65 2c 20 32 31 |item exa|mple, 21|
|000054e0| 36 0d 20 20 5c 69 74 65 | 6d 20 53 79 6c 76 65 73 |6. \ite|m Sylves|
|000054f0| 74 65 72 20 65 71 75 61 | 74 69 6f 6e 2c 20 31 33 |ter equa|tion, 13|
|00005500| 31 2c 20 32 31 36 0d 20 | 20 5c 69 74 65 6d 20 73 |1, 216. | \item s|
|00005510| 79 6d 62 6f 6c 20 74 61 | 62 6c 65 0d 20 20 20 20 |ymbol ta|ble. |
|00005520| 5c 73 75 62 69 74 65 6d | 20 63 6c 65 61 72 69 6e |\subitem| clearin|
|00005530| 67 2c 20 36 37 0d 20 20 | 5c 69 74 65 6d 20 73 79 |g, 67. |\item sy|
|00005540| 6d 6d 28 29 2c 20 32 31 | 37 0d 20 20 20 20 5c 73 |mm(), 21|7. \s|
|00005550| 75 62 69 74 65 6d 20 65 | 78 61 6d 70 6c 65 2c 20 |ubitem e|xample, |
|00005560| 32 31 37 0d 20 20 5c 69 | 74 65 6d 20 73 79 6d 6d |217. \i|tem symm|
|00005570| 65 74 72 69 63 20 65 69 | 67 65 6e 20 64 65 63 6f |etric ei|gen deco|
|00005580| 6d 70 6f 73 69 74 69 6f | 6e 2c 20 38 35 0d 20 20 |mpositio|n, 85. |
|00005590| 5c 69 74 65 6d 20 73 79 | 6d 6d 65 74 72 69 63 20 |\item sy|mmetric |
|000055a0| 6d 61 74 72 69 78 2c 20 | 31 32 33 2c 20 32 31 37 |matrix, |123, 217|
|000055b0| 0d 20 20 5c 69 74 65 6d | 20 73 79 73 74 65 6d 28 |. \item| system(|
|000055c0| 29 2c 20 32 31 38 0d 20 | 20 20 20 5c 73 75 62 69 |), 218. | \subi|
|000055d0| 74 65 6d 20 65 78 61 6d | 70 6c 65 2c 20 32 31 38 |tem exam|ple, 218|
|000055e0| 0d 0d 20 20 5c 69 6e 64 | 65 78 73 70 61 63 65 0d |.. \ind|exspace.|
|000055f0| 0d 20 20 5c 69 74 65 6d | 20 74 61 6e 28 29 2c 20 |. \item| tan(), |
|00005600| 32 31 39 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |219. |\subitem|
|00005610| 20 65 78 61 6d 70 6c 65 | 2c 20 32 31 39 0d 20 20 | example|, 219. |
|00005620| 5c 69 74 65 6d 20 74 61 | 6e 67 65 6e 74 2c 20 32 |\item ta|ngent, 2|
|00005630| 31 39 0d 20 20 20 20 5c | 73 75 62 69 74 65 6d 20 |19. \|subitem |
|00005640| 68 79 70 65 72 62 6f 6c | 69 63 2c 20 32 32 30 0d |hyperbol|ic, 220.|
|00005650| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 69 6e 76 | \sub|item inv|
|00005660| 65 72 73 65 2c 20 35 35 | 0d 20 20 20 20 5c 73 75 |erse, 55|. \su|
|00005670| 62 69 74 65 6d 20 69 6e | 76 65 72 73 65 20 68 79 |bitem in|verse hy|
|00005680| 70 65 72 62 6f 6c 69 63 | 2c 20 35 37 0d 20 20 5c |perbolic|, 57. \|
|00005690| 69 74 65 6d 20 74 61 6e | 68 28 29 2c 20 32 32 30 |item tan|h(), 220|
|000056a0| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|000056b0| 61 6d 70 6c 65 2c 20 32 | 32 30 0d 20 20 5c 69 74 |ample, 2|20. \it|
|000056c0| 65 6d 20 74 65 73 74 20 | 66 6f 72 20 66 69 6e 69 |em test |for fini|
|000056d0| 74 65 20 76 61 6c 75 65 | 73 2c 20 39 38 0d 20 20 |te value|s, 98. |
|000056e0| 5c 69 74 65 6d 20 74 65 | 73 74 20 66 6f 72 20 69 |\item te|st for i|
|000056f0| 6e 66 69 6e 69 74 79 2c | 20 31 32 31 0d 20 20 5c |nfinity,| 121. \|
|00005700| 69 74 65 6d 20 74 65 73 | 74 20 66 6f 72 20 6e 6f |item tes|t for no|
|00005710| 6e 2d 7a 65 72 6f 20 6d | 61 74 72 69 78 2c 20 35 |n-zero m|atrix, 5|
|00005720| 31 2c 20 35 32 0d 20 20 | 5c 69 74 65 6d 20 74 65 |1, 52. |\item te|
|00005730| 73 74 20 66 6f 72 20 6e | 6f 74 2d 61 2d 6e 75 6d |st for n|ot-a-num|
|00005740| 62 65 72 2c 20 31 32 32 | 0d 20 20 5c 69 74 65 6d |ber, 122|. \item|
|00005750| 20 74 65 73 74 20 66 6f | 72 20 73 79 6d 6d 65 74 | test fo|r symmet|
|00005760| 72 69 63 20 6d 61 74 72 | 69 78 2c 20 31 32 33 0d |ric matr|ix, 123.|
|00005770| 20 20 5c 69 74 65 6d 20 | 74 65 73 74 20 66 6f 72 | \item |test for|
|00005780| 20 7a 65 72 6f 20 6c 65 | 6e 67 74 68 20 6d 61 74 | zero le|ngth mat|
|00005790| 72 69 78 2c 20 31 32 30 | 0d 20 20 5c 69 74 65 6d |rix, 120|. \item|
|000057a0| 20 74 65 73 74 69 6e 67 | 20 66 6f 72 20 61 6e 20 | testing| for an |
|000057b0| 61 72 67 75 6d 65 6e 74 | 2c 20 38 39 0d 20 20 5c |argument|, 89. \|
|000057c0| 69 74 65 6d 20 74 69 63 | 28 29 2c 20 32 32 31 0d |item tic|(), 221.|
|000057d0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|000057e0| 6d 70 6c 65 2c 20 32 32 | 31 0d 20 20 5c 69 74 65 |mple, 22|1. \ite|
|000057f0| 6d 20 74 69 6d 65 72 0d | 20 20 20 20 5c 73 75 62 |m timer.| \sub|
|00005800| 69 74 65 6d 20 72 65 61 | 64 69 6e 67 2c 20 32 32 |item rea|ding, 22|
|00005810| 33 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 72 |3. \s|ubitem r|
|00005820| 65 73 65 74 74 69 6e 67 | 2c 20 32 32 31 0d 20 20 |esetting|, 221. |
|00005830| 20 20 5c 73 75 62 69 74 | 65 6d 20 73 74 61 72 74 | \subit|em start|
|00005840| 69 6e 67 2c 20 32 32 31 | 0d 20 20 5c 69 74 65 6d |ing, 221|. \item|
|00005850| 20 74 6d 70 5c 5f 66 69 | 6c 65 28 29 2c 20 32 32 | tmp\_fi|le(), 22|
|00005860| 32 0d 20 20 20 20 5c 73 | 75 62 69 74 65 6d 20 65 |2. \s|ubitem e|
|00005870| 78 61 6d 70 6c 65 2c 20 | 32 32 32 0d 20 20 5c 69 |xample, |222. \i|
|00005880| 74 65 6d 20 74 6f 63 28 | 29 2c 20 32 32 33 0d 20 |tem toc(|), 223. |
|00005890| 20 20 20 5c 73 75 62 69 | 74 65 6d 20 65 78 61 6d | \subi|tem exam|
|000058a0| 70 6c 65 2c 20 32 32 33 | 0d 20 20 5c 69 74 65 6d |ple, 223|. \item|
|000058b0| 20 74 72 61 63 65 20 6f | 66 20 61 20 6d 61 74 72 | trace o|f a matr|
|000058c0| 69 78 2c 20 32 32 34 0d | 20 20 5c 69 74 65 6d 20 |ix, 224.| \item |
|000058d0| 74 72 61 63 65 28 29 2c | 20 32 32 34 0d 20 20 20 |trace(),| 224. |
|000058e0| 20 5c 73 75 62 69 74 65 | 6d 20 65 78 61 6d 70 6c | \subite|m exampl|
|000058f0| 65 2c 20 32 32 34 0d 20 | 20 5c 69 74 65 6d 20 74 |e, 224. | \item t|
|00005900| 72 69 6c 28 29 2c 20 32 | 32 35 0d 20 20 20 20 5c |ril(), 2|25. \|
|00005910| 73 75 62 69 74 65 6d 20 | 65 78 61 6d 70 6c 65 2c |subitem |example,|
|00005920| 20 32 32 35 0d 20 20 5c | 69 74 65 6d 20 74 72 69 | 225. \|item tri|
|00005930| 70 6c 65 20 70 72 6f 64 | 75 63 74 2c 20 37 34 0d |ple prod|uct, 74.|
|00005940| 20 20 5c 69 74 65 6d 20 | 74 72 69 75 28 29 2c 20 | \item |triu(), |
|00005950| 32 32 36 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |226. |\subitem|
|00005960| 20 65 78 61 6d 70 6c 65 | 2c 20 32 32 36 0d 20 20 | example|, 226. |
|00005970| 5c 69 74 65 6d 20 74 72 | 75 6e 63 61 74 69 6f 6e |\item tr|uncation|
|00005980| 2c 20 31 31 36 0d 20 20 | 5c 69 74 65 6d 20 74 79 |, 116. |\item ty|
|00005990| 70 65 20 6f 66 20 65 6e | 74 69 74 79 2c 20 36 35 |pe of en|tity, 65|
|000059a0| 0d 20 20 5c 69 74 65 6d | 20 74 79 70 65 28 29 2c |. \item| type(),|
|000059b0| 20 32 32 37 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 227. | \subite|
|000059c0| 6d 20 65 78 61 6d 70 6c | 65 2c 20 32 32 37 0d 0d |m exampl|e, 227..|
|000059d0| 20 20 5c 69 6e 64 65 78 | 73 70 61 63 65 0d 0d 20 | \index|space.. |
|000059e0| 20 5c 69 74 65 6d 20 75 | 6e 69 66 6f 72 6d 20 64 | \item u|niform d|
|000059f0| 69 73 74 72 69 62 75 74 | 69 6f 6e 2c 20 31 37 38 |istribut|ion, 178|
|00005a00| 0d 20 20 5c 69 74 65 6d | 20 75 6e 69 6f 6e 20 6f |. \item| union o|
|00005a10| 66 20 74 77 6f 20 73 65 | 74 73 2c 20 32 32 38 0d |f two se|ts, 228.|
|00005a20| 20 20 5c 69 74 65 6d 20 | 75 6e 69 6f 6e 28 29 2c | \item |union(),|
|00005a30| 20 32 32 38 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 228. | \subite|
|00005a40| 6d 20 65 78 61 6d 70 6c | 65 2c 20 32 32 38 0d 20 |m exampl|e, 228. |
|00005a50| 20 5c 69 74 65 6d 20 75 | 6e 69 71 75 65 20 66 69 | \item u|nique fi|
|00005a60| 6c 65 6e 61 6d 65 20 67 | 65 6e 65 72 61 74 6f 72 |lename g|enerator|
|00005a70| 2c 20 32 32 32 0d 20 20 | 5c 69 74 65 6d 20 75 70 |, 222. |\item up|
|00005a80| 70 65 72 20 74 72 69 61 | 6e 67 75 6c 61 72 20 6d |per tria|ngular m|
|00005a90| 61 74 72 69 78 2c 20 32 | 32 36 0d 20 20 5c 69 74 |atrix, 2|26. \it|
|00005aa0| 65 6d 20 75 73 65 72 20 | 69 6e 70 75 74 2c 20 31 |em user |input, 1|
|00005ab0| 31 35 0d 20 20 5c 69 74 | 65 6d 20 55 53 45 52 2d |15. \it|em USER-|
|00005ac0| 52 41 49 53 45 44 2d 45 | 52 52 4f 52 2c 20 38 37 |RAISED-E|RROR, 87|
|00005ad0| 0d 20 20 5c 69 74 65 6d | 20 75 73 69 6e 67 20 74 |. \item| using t|
|00005ae0| 68 65 20 64 69 73 61 73 | 73 65 6d 62 6c 65 72 2c |he disas|sembler,|
|00005af0| 20 32 34 31 0d 0d 20 20 | 5c 69 6e 64 65 78 73 70 | 241.. |\indexsp|
|00005b00| 61 63 65 0d 0d 20 20 5c | 69 74 65 6d 20 76 61 72 |ace.. \|item var|
|00005b10| 69 61 62 6c 65 0d 20 20 | 20 20 5c 73 75 62 69 74 |iable. | \subit|
|00005b20| 65 6d 20 63 6c 65 61 72 | 69 6e 67 2c 20 36 36 0d |em clear|ing, 66.|
|00005b30| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 64 65 73 | \sub|item des|
|00005b40| 63 72 69 70 74 69 6f 6e | 2c 20 32 32 37 0d 20 20 |cription|, 227. |
|00005b50| 5c 69 74 65 6d 20 76 61 | 72 69 61 62 6c 65 20 74 |\item va|riable t|
|00005b60| 79 70 65 2c 20 36 35 0d | 20 20 5c 69 74 65 6d 20 |ype, 65.| \item |
|00005b70| 76 61 72 69 61 62 6c 65 | 73 0d 20 20 20 20 5c 73 |variable|s. \s|
|00005b80| 75 62 69 74 65 6d 20 63 | 6c 65 61 72 69 6e 67 20 |ubitem c|learing |
|00005b90| 61 6c 6c 2c 20 36 37 0d | 20 20 20 20 5c 73 75 62 |all, 67.| \sub|
|00005ba0| 69 74 65 6d 20 65 6e 76 | 69 72 6f 6e 6d 65 6e 74 |item env|ironment|
|00005bb0| 61 6c 2c 20 31 30 37 0d | 20 20 20 20 5c 73 75 62 |al, 107.| \sub|
|00005bc0| 69 74 65 6d 20 6c 69 73 | 74 69 6e 67 20 61 6c 6c |item lis|ting all|
|00005bd0| 2c 20 32 33 31 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 231. | \subit|
|00005be0| 65 6d 20 72 65 61 64 69 | 6e 67 20 66 72 6f 6d 20 |em readi|ng from |
|00005bf0| 61 20 66 69 6c 65 2c 20 | 31 38 32 0d 20 20 5c 69 |a file, |182. \i|
|00005c00| 74 65 6d 20 76 65 63 74 | 6f 72 0d 20 20 20 20 5c |tem vect|or. \|
|00005c10| 73 75 62 69 74 65 6d 20 | 6c 69 6e 65 61 72 6c 79 |subitem |linearly|
|00005c20| 20 73 70 61 63 65 64 2c | 20 31 32 35 0d 20 20 20 | spaced,| 125. |
|00005c30| 20 5c 73 75 62 69 74 65 | 6d 20 6c 6f 67 61 72 69 | \subite|m logari|
|00005c40| 74 68 6d 69 63 2c 20 31 | 32 39 0d 20 20 20 20 5c |thmic, 1|29. \|
|00005c50| 73 75 62 69 74 65 6d 20 | 73 75 6d 2c 20 32 31 33 |subitem |sum, 213|
|00005c60| 0d 20 20 5c 69 74 65 6d | 20 76 65 63 74 6f 72 20 |. \item| vector |
|00005c70| 63 72 6f 73 73 20 70 72 | 6f 64 75 63 74 2c 20 37 |cross pr|oduct, 7|
|00005c80| 34 0d 20 20 5c 69 74 65 | 6d 20 76 65 63 74 6f 72 |4. \ite|m vector|
|00005c90| 20 64 6f 74 20 70 72 6f | 64 75 63 74 2c 20 38 32 | dot pro|duct, 82|
|00005ca0| 0d 20 20 5c 69 74 65 6d | 20 76 65 63 74 6f 72 73 |. \item| vectors|
|00005cb0| 2c 20 31 34 0d 0d 20 20 | 5c 69 6e 64 65 78 73 70 |, 14.. |\indexsp|
|00005cc0| 61 63 65 0d 0d 20 20 5c | 69 74 65 6d 20 77 68 61 |ace.. \|item wha|
|00005cd0| 74 28 29 2c 20 32 32 39 | 0d 20 20 20 20 5c 73 75 |t(), 229|. \su|
|00005ce0| 62 69 74 65 6d 20 65 78 | 61 6d 70 6c 65 2c 20 32 |bitem ex|ample, 2|
|00005cf0| 32 39 0d 20 20 5c 69 74 | 65 6d 20 77 68 6f 28 29 |29. \it|em who()|
|00005d00| 2c 20 32 33 31 0d 20 20 | 20 20 5c 73 75 62 69 74 |, 231. | \subit|
|00005d10| 65 6d 20 65 78 61 6d 70 | 6c 65 2c 20 32 33 31 0d |em examp|le, 231.|
|00005d20| 20 20 5c 69 74 65 6d 20 | 77 68 6f 73 28 29 2c 20 | \item |whos(), |
|00005d30| 32 33 32 0d 20 20 20 20 | 5c 73 75 62 69 74 65 6d |232. |\subitem|
|00005d40| 20 65 78 61 6d 70 6c 65 | 2c 20 32 33 32 0d 20 20 | example|, 232. |
|00005d50| 5c 69 74 65 6d 20 77 69 | 6e 64 6f 77 73 0d 20 20 |\item wi|ndows. |
|00005d60| 20 20 5c 73 75 62 69 74 | 65 6d 20 63 6c 6f 73 69 | \subit|em closi|
|00005d70| 6e 67 20 61 6c 6c 20 70 | 6c 6f 74 74 69 6e 67 2c |ng all p|lotting,|
|00005d80| 20 31 35 30 0d 20 20 20 | 20 5c 73 75 62 69 74 65 | 150. | \subite|
|00005d90| 6d 20 66 6f 72 20 70 6c | 6f 74 74 69 6e 67 2c 20 |m for pl|otting, |
|00005da0| 31 37 34 0d 20 20 5c 69 | 74 65 6d 20 77 6f 72 6b |174. \i|tem work|
|00005db0| 69 6e 67 20 64 69 72 65 | 63 74 6f 72 79 2c 20 36 |ing dire|ctory, 6|
|00005dc0| 31 0d 20 20 5c 69 74 65 | 6d 20 77 72 69 74 65 20 |1. \ite|m write |
|00005dd0| 77 6f 72 6b 73 70 61 63 | 65 20 74 6f 20 61 20 66 |workspac|e to a f|
|00005de0| 69 6c 65 2c 20 31 39 30 | 0d 20 20 5c 69 74 65 6d |ile, 190|. \item|
|00005df0| 20 77 72 69 74 65 28 29 | 2c 20 32 33 33 0d 20 20 | write()|, 233. |
|00005e00| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00005e10| 6c 65 2c 20 32 33 33 0d | 20 20 5c 69 74 65 6d 20 |le, 233.| \item |
|00005e20| 77 72 69 74 65 62 28 29 | 2c 20 32 33 35 0d 20 20 |writeb()|, 235. |
|00005e30| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00005e40| 6c 65 2c 20 32 33 35 0d | 20 20 5c 69 74 65 6d 20 |le, 235.| \item |
|00005e50| 77 72 69 74 65 6d 28 29 | 2c 20 32 33 36 0d 20 20 |writem()|, 236. |
|00005e60| 20 20 5c 73 75 62 69 74 | 65 6d 20 65 78 61 6d 70 | \subit|em examp|
|00005e70| 6c 65 2c 20 32 33 36 0d | 20 20 5c 69 74 65 6d 20 |le, 236.| \item |
|00005e80| 77 72 69 74 69 6e 67 20 | 61 20 6d 61 74 72 69 78 |writing |a matrix|
|00005e90| 20 74 6f 20 61 20 66 69 | 6c 65 2c 20 32 33 36 0d | to a fi|le, 236.|
|00005ea0| 20 20 5c 69 74 65 6d 20 | 77 72 69 74 69 6e 67 20 | \item |writing |
|00005eb0| 62 69 6e 61 72 79 20 64 | 61 74 61 20 74 6f 20 61 |binary d|ata to a|
|00005ec0| 20 66 69 6c 65 2c 20 32 | 33 35 0d 0d 20 20 5c 69 | file, 2|35.. \i|
|00005ed0| 6e 64 65 78 73 70 61 63 | 65 0d 0d 20 20 5c 69 74 |ndexspac|e.. \it|
|00005ee0| 65 6d 20 78 6c 61 62 65 | 6c 28 29 2c 20 32 33 37 |em xlabe|l(), 237|
|00005ef0| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00005f00| 61 6d 70 6c 65 2c 20 32 | 33 37 0d 0d 20 20 5c 69 |ample, 2|37.. \i|
|00005f10| 6e 64 65 78 73 70 61 63 | 65 0d 0d 20 20 5c 69 74 |ndexspac|e.. \it|
|00005f20| 65 6d 20 79 6c 61 62 65 | 6c 28 29 2c 20 32 33 38 |em ylabe|l(), 238|
|00005f30| 0d 20 20 20 20 5c 73 75 | 62 69 74 65 6d 20 65 78 |. \su|bitem ex|
|00005f40| 61 6d 70 6c 65 2c 20 32 | 33 38 0d 0d 20 20 5c 69 |ample, 2|38.. \i|
|00005f50| 6e 64 65 78 73 70 61 63 | 65 0d 0d 20 20 5c 69 74 |ndexspac|e.. \it|
|00005f60| 65 6d 20 7a 65 72 6f 73 | 28 29 2c 20 32 33 39 0d |em zeros|(), 239.|
|00005f70| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00005f80| 6d 70 6c 65 2c 20 32 33 | 39 0d 20 20 5c 69 74 65 |mple, 23|9. \ite|
|00005f90| 6d 20 7a 6c 61 62 65 6c | 28 29 2c 20 32 34 30 0d |m zlabel|(), 240.|
|00005fa0| 20 20 20 20 5c 73 75 62 | 69 74 65 6d 20 65 78 61 | \sub|item exa|
|00005fb0| 6d 70 6c 65 2c 20 32 34 | 30 0d 0d 5c 65 6e 64 7b |mple, 24|0..\end{|
|00005fc0| 74 68 65 69 6e 64 65 78 | 7d 0d |theindex|}. |
+--------+-------------------------+-------------------------+--------+--------+