home *** CD-ROM | disk | FTP | other *** search
- # Animated Towers of Hanoi using Tk with optional bitmap file in
- # background.
- #
- # Usage: tkhanoi [n [bitmapfile]]
- #
- # n is the number of pieces to animate; default is 4, maximum 15.
- #
- # The bitmap file can be any X11 bitmap file (look in
- # /usr/include/X11/bitmaps for samples); it is displayed as the
- # background of the animation. Default is no bitmap.
-
- # This uses Steen Lumholt's Tk interface
- from Tkinter import *
-
-
- # Basic Towers-of-Hanoi algorithm: move n pieces from a to b, using c
- # as temporary. For each move, call report()
- def hanoi(n, a, b, c, report):
- if n <= 0: return
- hanoi(n-1, a, c, b, report)
- report(n, a, b)
- hanoi(n-1, c, b, a, report)
-
-
- # The graphical interface
- class Tkhanoi:
-
- # Create our objects
- def __init__(self, n, bitmap = None):
- self.n = n
- self.tk = tk = Tk()
- self.canvas = c = Canvas(tk)
- c.pack()
- width, height = tk.getint(c['width']), tk.getint(c['height'])
-
- # Add background bitmap
- if bitmap:
- self.bitmap = c.create_bitmap(width/2, height/2,
- {'bitmap': bitmap,
- 'foreground': 'blue'})
-
- # Generate pegs
- pegwidth = 10
- pegheight = height/2
- pegdist = width/3
- x1, y1 = (pegdist-pegwidth)/2, height*1/3
- x2, y2 = x1+pegwidth, y1+pegheight
- self.pegs = []
- p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'})
- self.pegs.append(p)
- x1, x2 = x1+pegdist, x2+pegdist
- p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'})
- self.pegs.append(p)
- x1, x2 = x1+pegdist, x2+pegdist
- p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'})
- self.pegs.append(p)
- self.tk.update()
-
- # Generate pieces
- pieceheight = pegheight/16
- maxpiecewidth = pegdist*2/3
- minpiecewidth = 2*pegwidth
- self.pegstate = [[], [], []]
- self.pieces = {}
- x1, y1 = (pegdist-maxpiecewidth)/2, y2-pieceheight-2
- x2, y2 = x1+maxpiecewidth, y1+pieceheight
- dx = (maxpiecewidth-minpiecewidth) / (2*max(1, n-1))
- for i in range(n, 0, -1):
- p = c.create_rectangle(x1, y1, x2, y2,
- {'fill': 'red'})
- self.pieces[i] = p
- self.pegstate[0].append(i)
- x1, x2 = x1 + dx, x2-dx
- y1, y2 = y1 - pieceheight-2, y2-pieceheight-2
- self.tk.update()
- self.tk.after(25)
-
- # Run -- never returns
- def run(self):
- while 1:
- hanoi(self.n, 0, 1, 2, self.report)
- hanoi(self.n, 1, 2, 0, self.report)
- hanoi(self.n, 2, 0, 1, self.report)
- hanoi(self.n, 0, 2, 1, self.report)
- hanoi(self.n, 2, 1, 0, self.report)
- hanoi(self.n, 1, 0, 2, self.report)
-
- # Reporting callback for the actual hanoi function
- def report(self, i, a, b):
- if self.pegstate[a][-1] != i: raise RuntimeError # Assertion
- del self.pegstate[a][-1]
- p = self.pieces[i]
- c = self.canvas
-
- # Lift the piece above peg a
- ax1, ay1, ax2, ay2 = c.bbox(self.pegs[a])
- while 1:
- x1, y1, x2, y2 = c.bbox(p)
- if y2 < ay1: break
- c.move(p, 0, -1)
- self.tk.update()
-
- # Move it towards peg b
- bx1, by1, bx2, by2 = c.bbox(self.pegs[b])
- newcenter = (bx1+bx2)/2
- while 1:
- x1, y1, x2, y2 = c.bbox(p)
- center = (x1+x2)/2
- if center == newcenter: break
- if center > newcenter: c.move(p, -1, 0)
- else: c.move(p, 1, 0)
- self.tk.update()
-
- # Move it down on top of the previous piece
- pieceheight = y2-y1-2
- newbottom = by2 - pieceheight*len(self.pegstate[b]) - 2
- while 1:
- x1, y1, x2, y2 = c.bbox(p)
- if y2 >= newbottom: break
- c.move(p, 0, 1)
- self.tk.update()
-
- # Update peg state
- self.pegstate[b].append(i)
-
-
- # Main program
- def main():
- import sys, string
-
- # First argument is number of pegs, default 4
- if sys.argv[1:]:
- n = string.atoi(sys.argv[1])
- else:
- n = 4
-
- # Second argument is bitmap file, default none
- if sys.argv[2:]:
- bitmap = sys.argv[2]
- # Reverse meaning of leading '@' compared to Tk
- if bitmap[0] == '@': bitmap = bitmap[1:]
- else: bitmap = '@' + bitmap
- else:
- bitmap = None
-
- # Create the graphical objects...
- h = Tkhanoi(n, bitmap)
-
- # ...and run!
- h.run()
-
-
- # Call main when run as script
- if __name__ == '__main__':
- main()
-