home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-09-27 | 19.3 KB | 610 lines | [TEXT/CCL2] |
- ;;; prims.scm -- definitions for primitives
- ;;;
- ;;; author : Sandra Loosemore
- ;;; date : 9 Jun 1992
- ;;;
- ;;; WARNING!!! This file contains Common-Lisp specific code.
- ;;;
-
-
- ;;; Helper stuff
-
- (define-integrable (is-fixnum? x)
- (lisp:typep x 'lisp:fixnum))
-
- (define-integrable (is-integer? x)
- (lisp:typep x 'lisp:integer))
-
- (define-integrable (is-single-float? x)
- (lisp:typep x 'lisp:single-float))
-
- (define-integrable (is-double-float? x)
- (lisp:typep x 'lisp:double-float))
-
- (define-syntax (the-fixnum x)
- `(lisp:the lisp:fixnum ,x))
-
- (define-syntax (the-integer x)
- `(lisp:the lisp:integer ,x))
-
- (define-syntax (the-single-float x)
- `(lisp:the lisp:single-float ,x))
-
- (define-syntax (the-double-float x)
- `(lisp:the lisp:double-float ,x))
-
- (define-syntax (make-haskell-tuple2 x y)
- `(make-tuple (box ,x) (box ,y)))
-
- ;;; Abort
- ;;; *** Should probably do something other than just signal an error.
-
- (define (prim.abort s)
- (haskell-runtime-error s))
-
- (define (haskell-string->list s)
- (if (null? s)
- '()
- (cons (integer->char (force (car s)))
- (haskell-string->list (force (cdr s))))))
-
- ;;; Char
-
- (define-syntax (prim.char-to-int c)
- `(the-fixnum ,c))
-
- (define-syntax (prim.int-to-char i)
- `(the-fixnum ,i))
-
- (define-syntax (prim.eq-char i1 i2)
- `(= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-eq-char i1 i2)
- `(not (= (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.le-char i1 i2)
- `(<= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-le-char i1 i2)
- `(> (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-lt-char i1 i2)
- `(>= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.lt-char i1 i2)
- `(< (the-fixnum ,i1) (the-fixnum ,i2)))
-
- (define-integrable prim.max-char 255)
-
-
- ;;; Floating
-
- (define-syntax (prim.eq-float f1 f2)
- `(= (the-single-float ,f1) (the-single-float ,f2)))
- (define-syntax (prim.not-eq-float f1 f2)
- `(not (= (the-single-float ,f1) (the-single-float ,f2))))
- (define-syntax (prim.le-float f1 f2)
- `(<= (the-single-float ,f1) (the-single-float ,f2)))
- (define-syntax (prim.not-le-float f1 f2)
- `(> (the-single-float ,f1) (the-single-float ,f2)))
- (define-syntax (prim.not-lt-float f1 f2)
- `(>= (the-single-float ,f1) (the-single-float ,f2)))
- (define-syntax (prim.lt-float f1 f2)
- `(< (the-single-float ,f1) (the-single-float ,f2)))
-
- (define-syntax (prim.eq-double f1 f2)
- `(= (the-double-float ,f1) (the-double-float ,f2)))
- (define-syntax (prim.not-eq-double f1 f2)
- `(not (= (the-double-float ,f1) (the-double-float ,f2))))
- (define-syntax (prim.le-double f1 f2)
- `(<= (the-double-float ,f1) (the-double-float ,f2)))
- (define-syntax (prim.not-le-double f1 f2)
- `(> (the-double-float ,f1) (the-double-float ,f2)))
- (define-syntax (prim.not-lt-double f1 f2)
- `(>= (the-double-float ,f1) (the-double-float ,f2)))
- (define-syntax (prim.lt-double f1 f2)
- `(< (the-double-float ,f1) (the-double-float ,f2)))
-
- (define-syntax (prim.float-max f1 f2)
- `(the-single-float (max (the-single-float ,f1) (the-single-float ,f2))))
- (define-syntax (prim.float-min f1 f2)
- `(the-single-float (min (the-single-float ,f1) (the-single-float ,f2))))
-
- (define-syntax (prim.double-max f1 f2)
- `(the-double-float (max (the-double-float ,f1) (the-double-float ,f2))))
- (define-syntax (prim.double-min f1 f2)
- `(the-double-float (min (the-double-float ,f1) (the-double-float ,f2))))
-
- (define-syntax (prim.plus-float f1 f2)
- `(the-single-float (+ (the-single-float ,f1) (the-single-float ,f2))))
- (define-syntax (prim.minus-float f1 f2)
- `(the-single-float (- (the-single-float ,f1) (the-single-float ,f2))))
- (define-syntax (prim.mul-float f1 f2)
- `(the-single-float (* (the-single-float ,f1) (the-single-float ,f2))))
- (define-syntax (prim.div-float f1 f2)
- `(the-single-float (/ (the-single-float ,f1) (the-single-float ,f2))))
-
- (define-syntax (prim.plus-double f1 f2)
- `(the-double-float (+ (the-double-float ,f1) (the-double-float ,f2))))
- (define-syntax (prim.minus-double f1 f2)
- `(the-double-float (- (the-double-float ,f1) (the-double-float ,f2))))
- (define-syntax (prim.mul-double f1 f2)
- `(the-double-float (* (the-double-float ,f1) (the-double-float ,f2))))
- (define-syntax (prim.div-double f1 f2)
- `(the-double-float (/ (the-double-float ,f1) (the-double-float ,f2))))
-
-
- (define-syntax (prim.neg-float f)
- `(the-single-float (- (the-single-float ,f))))
-
- (define-syntax (prim.neg-double f)
- `(the-double-float (- (the-double-float ,f))))
-
- (define-syntax (prim.abs-float f)
- `(the-single-float (lisp:abs (the-single-float ,f))))
-
- (define-syntax (prim.abs-double f)
- `(the-double-float (lisp:abs (the-double-float ,f))))
-
-
- (define-syntax (prim.exp-float f)
- `(the-single-float (lisp:exp (the-single-float ,f))))
- (define-syntax (prim.log-float f)
- `(the-single-float (lisp:log (the-single-float ,f))))
- (define-syntax (prim.sqrt-float f)
- `(the-single-float (lisp:sqrt (the-single-float ,f))))
- (define-syntax (prim.sin-float f)
- `(the-single-float (lisp:sin (the-single-float ,f))))
- (define-syntax (prim.cos-float f)
- `(the-single-float (lisp:cos (the-single-float ,f))))
- (define-syntax (prim.tan-float f)
- `(the-single-float (lisp:tan (the-single-float ,f))))
- (define-syntax (prim.asin-float f)
- `(the-single-float (lisp:asin (the-single-float ,f))))
- (define-syntax (prim.acos-float f)
- `(the-single-float (lisp:acos (the-single-float ,f))))
- (define-syntax (prim.atan-float f)
- `(the-single-float (lisp:atan (the-single-float ,f))))
- (define-syntax (prim.sinh-float f)
- `(the-single-float (lisp:sinh (the-single-float ,f))))
- (define-syntax (prim.cosh-float f)
- `(the-single-float (lisp:cosh (the-single-float ,f))))
- (define-syntax (prim.tanh-float f)
- `(the-single-float (lisp:tanh (the-single-float ,f))))
- (define-syntax (prim.asinh-float f)
- `(the-single-float (lisp:asinh (the-single-float ,f))))
- (define-syntax (prim.acosh-float f)
- `(the-single-float (lisp:acosh (the-single-float ,f))))
- (define-syntax (prim.atanh-float f)
- `(the-single-float (lisp:atanh (the-single-float ,f))))
- (define-syntax (prim.atan2-float f1 f2)
- `(the-single-float
- (lisp:atan (the-single-float ,f1) (the-single-float ,f2))))
-
-
- (define-syntax (prim.exp-double f)
- `(the-double-float (lisp:exp (the-double-float ,f))))
- (define-syntax (prim.log-double f)
- `(the-double-float (lisp:log (the-double-float ,f))))
- (define-syntax (prim.sqrt-double f)
- `(the-double-float (lisp:sqrt (the-double-float ,f))))
- (define-syntax (prim.sin-double f)
- `(the-double-float (lisp:sin (the-double-float ,f))))
- (define-syntax (prim.cos-double f)
- `(the-double-float (lisp:cos (the-double-float ,f))))
- (define-syntax (prim.tan-double f)
- `(the-double-float (lisp:tan (the-double-float ,f))))
- (define-syntax (prim.asin-double f)
- `(the-double-float (lisp:asin (the-double-float ,f))))
- (define-syntax (prim.acos-double f)
- `(the-double-float (lisp:acos (the-double-float ,f))))
- (define-syntax (prim.atan-double f)
- `(the-double-float (lisp:atan (the-double-float ,f))))
- (define-syntax (prim.sinh-double f)
- `(the-double-float (lisp:sinh (the-double-float ,f))))
- (define-syntax (prim.cosh-double f)
- `(the-double-float (lisp:cosh (the-double-float ,f))))
- (define-syntax (prim.tanh-double f)
- `(the-double-float (lisp:tanh (the-double-float ,f))))
- (define-syntax (prim.asinh-double f)
- `(the-double-float (lisp:asinh (the-double-float ,f))))
- (define-syntax (prim.acosh-double f)
- `(the-double-float (lisp:acosh (the-double-float ,f))))
- (define-syntax (prim.atanh-double f)
- `(the-double-float (lisp:atanh (the-double-float ,f))))
- (define-syntax (prim.atan2-double f1 f2)
- `(the-double-float
- (lisp:atan (the-double-float ,f1) (the-double-float ,f2))))
-
-
- (define-integrable prim.pi-float (lisp:coerce lisp:pi 'lisp:single-float))
-
- (define-integrable prim.pi-double (lisp:coerce lisp:pi 'lisp:double-float))
-
-
- ;;; Assumes rationals are represented as a 2-tuple of integers
-
- (define (prim.rational-to-float x)
- (let ((n (tuple-select 2 0 x))
- (d (tuple-select 2 1 x)))
- (if (eqv? d 0)
- (haskell-runtime-error "Divide by 0.")
- (prim.rational-to-float-aux n d))))
-
- (define (prim.rational-to-float-aux n d)
- (declare (type integer n d))
- (/ (lisp:coerce n 'lisp:single-float)
- (lisp:coerce d 'lisp:single-float)))
-
- (define (prim.rational-to-double x)
- (let ((n (tuple-select 2 0 x))
- (d (tuple-select 2 1 x)))
- (if (eqv? d 0)
- (haskell-runtime-error "Divide by 0.")
- (prim.rational-to-double-aux n d))))
-
- (define (prim.rational-to-double-aux n d)
- (declare (type integer n d))
- (/ (lisp:coerce n 'lisp:double-float)
- (lisp:coerce d 'lisp:double-float)))
-
- (define (prim.float-to-rational x)
- (let ((r (lisp:rational (the lisp:single-float x))))
- (declare (type rational r))
- (make-tuple (lisp:numerator r) (lisp:denominator r))))
-
- (define (prim.double-to-rational x)
- (let ((r (lisp:rational (the lisp:double-float x))))
- (declare (type rational r))
- (make-tuple (lisp:numerator r) (lisp:denominator r))))
-
-
- (define-integrable prim.float-1 (lisp:coerce 1.0 'lisp:single-float))
- (define-integrable prim.double-1 (lisp:coerce 1.0 'lisp:double-float))
-
- (define-integrable prim.float-digits
- (lisp:float-digits prim.float-1))
-
- (define-integrable prim.double-digits
- (lisp:float-digits prim.double-1))
-
- (define-integrable prim.float-radix
- (lisp:float-radix prim.float-1))
-
- (define-integrable prim.double-radix
- (lisp:float-radix prim.double-1))
-
-
- ;;; Sometimes least-positive-xxx-float is denormalized.
-
- (define-integrable prim.float-min-exp
- (multiple-value-bind (m e)
- (lisp:decode-float
- #+lucid lcl:least-positive-normalized-single-float
- #-lucid lisp:least-positive-single-float)
- (declare (ignore m))
- e))
-
- (define-integrable prim.double-min-exp
- (multiple-value-bind (m e)
- (lisp:decode-float
- #+lucid lcl:least-positive-normalized-double-float
- #-lucid lisp:least-positive-double-float)
- (declare (ignore m))
- e))
-
- (define-integrable prim.float-max-exp
- (multiple-value-bind (m e)
- (lisp:decode-float lisp:most-positive-single-float)
- (declare (ignore m))
- e))
-
- (define-integrable prim.double-max-exp
- (multiple-value-bind (m e)
- (lisp:decode-float lisp:most-positive-double-float)
- (declare (ignore m))
- e))
-
- (define-integrable (prim.float-range x)
- (declare (ignore x))
- (make-haskell-tuple2 prim.float-min-exp prim.float-max-exp))
-
- (define-integrable (prim.double-range x)
- (declare (ignore x))
- (make-haskell-tuple2 prim.double-min-exp prim.double-max-exp))
-
-
- ;;; *** I'm not sure if these are correct. Should the exponent value
- ;;; *** be taken as the value that lisp:integer-decode-float returns,
- ;;; *** or as the value that lisp:decode-float returns? (They're
- ;;; *** not the same because the significand is scaled differently.)
- ;;; *** I'm guessing that Haskell's model is to use the actual numbers
- ;;; *** that are in the bit fields
-
- ;;; jcp - I removed this since Haskell requires an integer instead of a
- ;;; fractional mantissa. My theory is that integer-decode-float returns
- ;;; what Haskell wants without fiddling (except sign reattachment)
-
- (define (exponent-adjustment m)
- (if (eqv? prim.float-radix 2)
- ;; the usual case -- e.g. IEEE floating point
- (lisp:integer-length m)
- (lisp:ceiling (lisp:log m prim.float-radix))))
-
- (define (prim.decode-float f)
- (multiple-value-bind (m e s)
- (lisp:integer-decode-float (the-single-float f))
- (make-haskell-tuple2 (* (the-integer m) (the-fixnum s))
- (the-fixnum e))))
-
- (define (prim.decode-double f)
- (multiple-value-bind (m e s)
- (lisp:integer-decode-float (the-double-float f))
- (make-haskell-tuple2 (* (the-integer m) (the-fixnum s))
- (the-fixnum e))))
-
- (define (prim.encode-float m e)
- (lisp:scale-float (lisp:coerce m 'lisp:single-float) (the-fixnum e)))
-
- (define (prim.encode-double m e)
- (lisp:scale-float (lisp:coerce m 'lisp:double-float) (the-fixnum e)))
-
-
- ;;; Integral
-
- (define-syntax (prim.eq-int i1 i2)
- `(= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-eq-int i1 i2)
- `(not (= (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.le-int i1 i2)
- `(<= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-le-int i1 i2)
- `(> (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.not-lt-int i1 i2)
- `(>= (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.lt-int i1 i2)
- `(< (the-fixnum ,i1) (the-fixnum ,i2)))
- (define-syntax (prim.int-max i1 i2)
- `(the-fixnum (max (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.int-min i1 i2)
- `(the-fixnum (min (the-fixnum ,i1) (the-fixnum ,i2))))
-
- (define-syntax (prim.eq-integer i1 i2)
- `(= (the-integer ,i1) (the-integer ,i2)))
- (define-syntax (prim.not-eq-integer i1 i2)
- `(not (= (the-integer ,i1) (the-integer ,i2))))
- (define-syntax (prim.le-integer i1 i2)
- `(<= (the-integer ,i1) (the-integer ,i2)))
- (define-syntax (prim.not-le-integer i1 i2)
- `(> (the-integer ,i1) (the-integer ,i2)))
- (define-syntax (prim.not-lt-integer i1 i2)
- `(>= (the-integer ,i1) (the-integer ,i2)))
- (define-syntax (prim.lt-integer i1 i2)
- `(< (the-integer ,i1) (the-integer ,i2)))
- (define-syntax (prim.integer-max i1 i2)
- `(the-integer (max (the-integer ,i1) (the-integer ,i2))))
- (define-syntax (prim.integer-min i1 i2)
- `(the-integer (min (the-integer ,i1) (the-integer ,i2))))
-
-
- (define-syntax (prim.plus-int i1 i2)
- `(the-fixnum (+ (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.minus-int i1 i2)
- `(the-fixnum (- (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.mul-int i1 i2)
- `(the-fixnum (* (the-fixnum ,i1) (the-fixnum ,i2))))
- (define-syntax (prim.neg-int i)
- `(the-fixnum (- (the-fixnum ,i))))
- (define-syntax (prim.abs-int i)
- `(the-fixnum (lisp:abs (the-fixnum ,i))))
-
- (define-integrable prim.minint lisp:most-negative-fixnum)
- (define-integrable prim.maxint lisp:most-positive-fixnum)
-
- (define-syntax (prim.plus-integer i1 i2)
- `(the-integer (+ (the-integer ,i1) (the-integer ,i2))))
- (define-syntax (prim.minus-integer i1 i2)
- `(the-integer (- (the-integer ,i1) (the-integer ,i2))))
- (define-syntax (prim.mul-integer i1 i2)
- `(the-integer (* (the-integer ,i1) (the-integer ,i2))))
- (define-syntax (prim.neg-integer i)
- `(the-integer (- (the-integer ,i))))
- (define-syntax (prim.abs-integer i)
- `(the-integer (lisp:abs (the-integer ,i))))
-
-
- (define (prim.div-rem-int i1 i2)
- (multiple-value-bind (q r)
- (lisp:truncate (the-fixnum i1) (the-fixnum i2))
- (make-tuple (box (the-fixnum q)) (box (the-fixnum r)))))
-
- (define (prim.div-rem-integer i1 i2)
- (multiple-value-bind (q r)
- (lisp:truncate (the-integer i1) (the-integer i2))
- (make-tuple (box (the-integer q)) (box (the-integer r)))))
-
- (define (prim.integer-to-int i)
- (if (is-fixnum? i)
- (the-fixnum i)
- (haskell-runtime-error "Integer -> Int overflow.")))
-
- (define-syntax (prim.int-to-integer i)
- i)
-
- ;;; Binary
-
- (define prim.nullbin '())
-
- (define (prim.is-null-bin x)
- (null? x))
-
- (define (prim.show-bin-int i b)
- (cons i b))
-
- (define (prim.show-bin-integer i b)
- (cons i b))
-
- (define (prim.show-bin-float f b)
- (cons f b))
-
- (define (prim.show-bin-double f b)
- (cons f b))
-
- (define (prim.bin-read-error)
- (haskell-runtime-error "Error: attempt to read from an incompatible Bin."))
-
- (define (prim.read-bin-int b)
- (if (or (null? b) (not (is-fixnum? (car b))))
- (prim.bin-read-error)
- (make-haskell-tuple2 (car b) (cdr b))))
-
- (define (prim.read-bin-integer b)
- (if (or (null? b) (not (is-integer? (car b))))
- (prim.bin-read-error)
- (make-haskell-tuple2 (car b) (cdr b))))
-
- (define (prim.read-bin-float b)
- (if (or (null? b) (not (is-single-float? (car b))))
- (prim.bin-read-error)
- (make-haskell-tuple2 (car b) (cdr b))))
-
- (define (prim.read-bin-double b)
- (if (or (null? b) (not (is-double-float? (car b))))
- (prim.bin-read-error)
- (make-haskell-tuple2 (car b) (cdr b))))
-
- (define (prim.read-bin-small-int b m)
- (if (or (null? b)
- (not (is-fixnum? (car b)))
- (> (the-fixnum (car b)) (the-fixnum m)))
- (prim.bin-read-error)
- (make-haskell-tuple2 (car b) (cdr b))))
-
- (define (prim.append-bin x y)
- (append x y))
-
-
- ;;; String primitives
-
- ;;; Calls to prim.string-eq are generated by the CFN to pattern match
- ;;; against string constants. So normally one of the arguments will be
- ;;; a constant string. Treat this case specially to avoid consing up
- ;;; a haskell string whenever it's called.
- ;;; This function is strict in both its arguments.
-
- (define-syntax (prim.string-eq s1 s2)
- (cond ((and (pair? s1)
- (eq? (car s1) 'make-haskell-string))
- `(prim.string-eq-inline ,(cadr s1) 0 ,(string-length (cadr s1)) ,s2))
- ((and (pair? s2)
- (eq? (car s2) 'make-haskell-string))
- `(prim.string-eq-inline ,(cadr s2) 0 ,(string-length (cadr s2)) ,s1))
- (else
- `(prim.string-eq-notinline ,s1 ,s2))))
-
- (define (prim.string-eq-inline lisp-string i n haskell-string)
- (declare (type fixnum i n))
- (cond ((eqv? i n)
- ;; Reached end of Lisp string constant -- better be at the end
- ;; of the Haskell string, too.
- (if (null? haskell-string) '#t '#f))
- ((null? haskell-string)
- ;; The Haskell string is too short.
- '#f)
- ((eqv? (the fixnum (char->integer (string-ref lisp-string i)))
- (the fixnum (force (car haskell-string))))
- ;; Next characters match, recurse
- (prim.string-eq-inline
- lisp-string (the fixnum (+ i 1)) n (force (cdr haskell-string))))
- (else
- ;; No match
- '#f)))
-
- (define (prim.string-eq-notinline s1 s2)
- (cond ((null? s1)
- ;; Reached end of first string.
- (if (null? s2) '#t '#f))
- ((null? s2)
- ;; Second string too short.
- '#f)
- ((eqv? (the fixnum (force (car s1))) (the fixnum (force (car s2))))
- (prim.string-eq-notinline (force (cdr s1)) (force (cdr s2))))
- (else
- '#f)))
-
-
- ;;; List primitives
-
-
- ;;; The first argument is strict and the second is a delay.
-
- (define-syntax (prim.append l1 l2)
- (cond ((and (pair? l1)
- (eq? (car l1) 'make-haskell-string))
- `(make-haskell-string-tail ,(cadr l1) ,l2))
- ((equal? l1 ''())
- `(force ,l2))
- ((equal? l2 '(box '()))
- l1)
- ;; *** could also look for
- ;; *** (append (cons x (box y)) z) => (cons x (box (append y z)))
- ;; *** but I don't think this happens very often anyway
- (else
- `(prim.append-aux ,l1 ,l2))))
-
- (define (prim.append-aux l1 l2)
- (cond ((null? l1)
- (force l2))
- ((and (forced? l2) (eq? (unbox l2) '()))
- ;; Appending nil is identity.
- l1)
- ((forced? (cdr l1))
- ;; Append eagerly if the tail of the first list argument has
- ;; already been forced.
- (cons (car l1)
- (if (null? (unbox (cdr l1)))
- l2 ; don't force this!!
- (box (prim.append-aux (unbox (cdr l1)) l2)))))
- (else
- (cons (car l1) (delay (prim.append-aux (force (cdr l1)) l2))))
- ))
-
-
- ;;; Both arguments are forced here. Have to be careful not to call
- ;;; recursively with an argument of 0.
- ;;; *** This is no longer used.
-
- (define (prim.take n l)
- (declare (type fixnum n))
- (cond ((not (pair? l))
- '())
- ((eqv? n 1)
- ;; Only one element to take.
- (cons (car l) (box '())))
- ((forced? (cdr l))
- ;; Take eagerly if the tail of the list has already been forced.
- (cons (car l) (box (prim.take (- n 1) (unbox (cdr l))))))
- (else
- (cons (car l) (delay (prim.take (- n 1) (force (cdr l))))))
- ))
-
-
- ;;; The optimizer gets rid of all first-order calls to these functions.
-
- (define (prim.foldr k z l)
- ;; k and z are nonstrict, l is strict
- (if (null? l)
- (force z)
- (funcall (force k)
- (car l)
- (delay (prim.foldr k z (force (cdr l)))))))
-
- (define (prim.build g)
- ;; g is strict
- (funcall g
- (box (function cons-constructor))
- (box '())))
-
-
- ;;; The code generator is supposed to inline all calls to this one.
- ;;; Both arguments are strict.
-
- (define (prim.strict2 x y)
- (declare (ignore x))
- y)
-