home *** CD-ROM | disk | FTP | other *** search
- //--------------------------------------------------------------------------------
- //
- // step
- //
- // Syntax: G=step(A,B,C,D,IU,T)
- //
- // This routine plots the step response of continuous-time linear systems.
- // It plots the time response of the following linear continuous-time
- // system
- // .
- // x = Ax + Bu
- // y = Cx + Du
- //
- // to a step input applied to the input IU. The routine may be called
- // in several fashions:
- //
- // (1) G=step(A,B,C,D)
- // (This produces the step response of the system looping over the
- // inputs and looping over the output with an arbitrary time
- // vector T=0.0:20.0:0.1).
- //
- // (2) G=step(A,B,C,D,IU)
- // (This produces the step response of the system to the IU input
- // and looped over the outputs with an arbitrary time T=0.0:20.0:0.1)
- //
- // (3) G=step(A,B,C,D,IU,T)
- // (This produces the step response of the system to the IU input
- // and looped over the outputs for the specified time vector T).
- //
- // (4) G=step(NUM,DEN)
- // (This produces the step response of the transfer function model
- // with an arbitrary time T=0.0:20.0:0.1).
- //
- // (5) G=step(NUM,DEN,T)
- // (This produces the step response of the transfer function model to
- // for the specified time vector T).
- //
- // For the cases where the time vector T is specified, the times must
- // be regularly spaced.
- //
- // Note: Two matrices are returned in a list.
- //
- // G.x = X values in the plot.
- // G.y = Y values in the plot.
- //
- // Note: The matrix G.y has as many columns as there are outputs and
- // has length(T) rows. The matrix G.x has as many columns as states
- // and has length(T) rows).
- //
- // Copyright(C), by Jeffrey B. Layton, 1994
- // Version JBL 940915
- //--------------------------------------------------------------------------------
-
- rfile tfchk
- rfile tf2ss
- rfile isempty
- rfile abcdchk
- rfile lsim
-
- step = function(a,b,c,d,iu,t)
- {
- local(nargs,Dum,num,den,A,B,C,D,msg,estr,IU,T,n,x,y)
-
- // Count number of input arguments
- nargs=0;
- if (exist(a)) {nargs=nargs+1;}
- if (exist(b)) {nargs=nargs+1;}
- if (exist(c)) {nargs=nargs+1;}
- if (exist(d)) {nargs=nargs+1;}
- if (exist(iu)) {nargs=nargs+1;}
- if (exist(t)) {nargs=nargs+1;}
-
- // Check system type
- if (nargs < 4) {
-
- // T.F. - convert
- Dum=tfchk(a,b);
- num=Dum.numc;
- den=Dum.denc;
- Dum=tf2ss(num,den);
- A=Dum.a;
- B=Dum.b;
- C=Dum.c;
- D=Dum.d;
- IU=1;
- if (exist(c)) {
- T=c;
- if (T.nr == 1) {
- T=T.';
- }
- else
- T=[0.0:20.0:0.1];
- T=T.';
- }
- else
- // S.S.
- A=a;
- B=b;
- C=c;
- D=d;
- if (exist(iu)) {
- IU=iu;
- if (exist(t)) {
- T=t;
- if (T.nr == 1) {
- T=T.';
- }
- else
- T=[0.0:20.0:0.1];
- T=T.';
- }
- else
- IU=B.nc;
- T=[0.0:20.0:0.1];
- T=T.';
- }
- msg="";
- msg=abcdchk(A,B,C,D);
- if (msg != "") {
- estr="lsim: "+msg;
- error(estr);
- }
- }
-
- // Perform Simulation (use lsim)
- n=length(T);
- for (i in 1:IU) {
- // Set B and D matrices for the ith input
- BI=B[;i];
- DI=D[;i];
- Dum=lsim(A,BI,C,DI,ones(n,1),T,zeros(BI.nr,BI.nc));
- x=Dum.x;
- y=Dum.y;
- }
-
- return << x=x; y=y >>
- };
-