home *** CD-ROM | disk | FTP | other *** search
- /* pnmnlfilt.c - 4 in 1 (2 non-linear) filter
- ** - smooth an anyimage
- ** - do alpha trimmed mean filtering on an anyimage
- ** - do optimal estimation smoothing on an anyimage
- ** - do edge enhancement on an anyimage
- **
- ** Version 1.0
- **
- ** The implementation of an alpha-trimmed mean filter
- ** is based on the description in IEEE CG&A May 1990
- ** Page 23 by Mark E. Lee and Richard A. Redner.
- **
- ** The paper recommends using a hexagon sampling region around each
- ** pixel being processed, allowing an effective sub pixel radius to be
- ** specified. The hexagon values are sythesised by area sampling the
- ** rectangular pixels with a hexagon grid. The seven hexagon values
- ** obtained from the 3x3 pixel grid are used to compute the alpha
- ** trimmed mean. Note that an alpha value of 0.0 gives a conventional
- ** mean filter (where the radius controls the contribution of
- ** surrounding pixels), while a value of 0.5 gives a median filter.
- ** Although there are only seven values to trim from before finding
- ** the mean, the algorithm has been extended from that described in
- ** CG&A by using interpolation, to allow a continuous selection of
- ** alpha value between and including 0.0 to 0.5 The useful values
- ** for radius are between 0.3333333 (where the filter will have no
- ** effect because only one pixel is sampled), to 1.0, where all
- ** pixels in the 3x3 grid are sampled.
- **
- ** The optimal estimation filter is taken from an article "Converting Dithered
- ** Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Journal, November
- ** 1992, and this article references "Digital Image Enhancement andNoise Filtering by
- ** Use of Local Statistics", Jong-Sen Lee, IEEE Transactions on Pattern Analysis and
- ** Machine Intelligence, March 1980.
- **
- ** Also borrow the technique used in pgmenhance(1) to allow edge
- ** enhancement if the alpha value is negative.
- **
- ** Author:
- ** Graeme W. Gill, 30th Jan 1993
- ** graeme@labtam.oz.au
- */
-
- #include <math.h>
- #include "pnm.h"
-
- double hex_area ARGS((double, double, double, double, double));
- int atfilt_setup ARGS((double, double, double));
- int atfilt0 ARGS((int *)), atfilt1 ARGS((int *)), atfilt2 ARGS((int *));
- int atfilt3 ARGS((int *)), atfilt4 ARGS((int *)), atfilt5 ARGS((int *));
- int (*atfuncs[6]) ARGS((int *)) = {atfilt0,atfilt1,atfilt2,atfilt3,atfilt4,atfilt5};
-
- xelval omaxval; /* global so that pixel processing code can get at it quickly */
- int noisevariance; /* global so that pixel processing code can get at it quickly */
-
- int
- main( argc, argv )
- int argc;
- char* argv[];
- {
- double radius=0.0,alpha= -1.0;
- FILE* ifp;
- int rows, cols, format, oformat, row, col;
- xelval maxval;
- int (*atfunc) ARGS((int *));
- char* usage = "alpha radius pnmfile\n\
- 0.0 <= alpha <= 0.5 for alpha trimmed mean -or- \n\
- 1.0 <= alpha <= 2.0 for optimal estimation -or- \n\
- -0.1 >= alpha >= -0.9 for edge enhancement\n\
- 0.3333 <= radius <= 1.0 specify effective radius\n";
-
-
- pnm_init( &argc, argv );
-
- if ( argc < 3 || argc > 4 )
- pm_usage( usage );
-
- if ( sscanf( argv[1], "%lf", &alpha ) != 1 )
- pm_usage( usage );
- if ( sscanf( argv[2], "%lf", &radius ) != 1 )
- pm_usage( usage );
-
- if ((alpha > -0.1 && alpha < 0.0) || (alpha > 0.5 && alpha < 1.0))
- pm_error( "Alpha must be in range 0.0 <= alpha <= 0.5 for alpha trimmed mean" );
- if (alpha > 2.0)
- pm_error( "Alpha must be in range 1.0 <= alpha <= 2.0 for optimal estimation" );
- if (alpha < -0.9 || (alpha > -0.1 && alpha < 0.0))
- pm_error( "Alpha must be in range -0.9 <= alpha <= -0.1 for edge enhancement" );
- if (radius < 0.333 || radius > 1.0)
- pm_error( "Radius must be in range 0.333333333 <= radius <= 1.0" );
-
- if ( argc == 4 )
- ifp = pm_openr( argv[3] );
- else
- ifp = stdin;
-
- pnm_readpnminit( ifp, &cols, &rows, &maxval, &format );
-
- oformat = PNM_FORMAT_TYPE(format);
- omaxval = PPM_MAXMAXVAL; /* force output to max precision */
-
- atfunc = atfuncs[atfilt_setup(alpha,radius,(double)omaxval/(double)maxval)];
-
- if ( oformat < PGM_TYPE )
- {
- if (PGM_MAXMAXVAL > PPM_MAXMAXVAL)
- pm_error( "Can't handle pgm input file as maxval is too big" );
- oformat = RPGM_FORMAT;
- pm_message( "promoting file to PGM" );
- }
- pnm_writepnminit( stdout, cols, rows, omaxval, oformat, 0 );
-
- if ( PNM_FORMAT_TYPE(oformat) == PPM_TYPE )
- {
- xel *irows[3];
- xel *irow0, *irow1, *irow2, *orow;
- int pr[9],pg[9],pb[9]; /* 3x3 neighbor pixel values */
- int r,g,b;
-
- irows[0] = pnm_allocrow( cols );
- irows[1] = pnm_allocrow( cols );
- irows[2] = pnm_allocrow( cols );
- irow0 = irows[0];
- irow1 = irows[1];
- irow2 = irows[2];
- orow = pnm_allocrow( cols );
-
- for ( row = 0; row < rows; row++ )
- {
- int po,no; /* offsets for left and right colums in 3x3 */
- register xel *ip0, *ip1, *ip2, *op;
-
- if (row == 0)
- {
- irow0 = irow1;
- pnm_readpnmrow( ifp, irow1, cols, maxval, format );
- }
- if (row == (rows-1))
- irow2 = irow1;
- else
- pnm_readpnmrow( ifp, irow2, cols, maxval, format );
-
- for (col = cols-1,po= col>0?1:0,no=0,ip0=irow0,ip1=irow1,ip2=irow2,op=orow;
- col >= 0;
- col--,ip0++,ip1++,ip2++,op++, no |= 1,po = col!= 0 ? po : 0)
- {
- /* grab 3x3 pixel values */
- pr[0] = PPM_GETR( *ip1 );
- pg[0] = PPM_GETG( *ip1 );
- pb[0] = PPM_GETB( *ip1 );
- pr[1] = PPM_GETR( *(ip1-no) );
- pg[1] = PPM_GETG( *(ip1-no) );
- pb[1] = PPM_GETB( *(ip1-no) );
- pr[5] = PPM_GETR( *(ip1+po) );
- pg[5] = PPM_GETG( *(ip1+po) );
- pb[5] = PPM_GETB( *(ip1+po) );
- pr[3] = PPM_GETR( *(ip2) );
- pg[3] = PPM_GETG( *(ip2) );
- pb[3] = PPM_GETB( *(ip2) );
- pr[2] = PPM_GETR( *(ip2-no) );
- pg[2] = PPM_GETG( *(ip2-no) );
- pb[2] = PPM_GETB( *(ip2-no) );
- pr[4] = PPM_GETR( *(ip2+po) );
- pg[4] = PPM_GETG( *(ip2+po) );
- pb[4] = PPM_GETB( *(ip2+po) );
- pr[6] = PPM_GETR( *(ip0+po) );
- pg[6] = PPM_GETG( *(ip0+po) );
- pb[6] = PPM_GETB( *(ip0+po) );
- pr[8] = PPM_GETR( *(ip0-no) );
- pg[8] = PPM_GETG( *(ip0-no) );
- pb[8] = PPM_GETB( *(ip0-no) );
- pr[7] = PPM_GETR( *(ip0) );
- pg[7] = PPM_GETG( *(ip0) );
- pb[7] = PPM_GETB( *(ip0) );
- r = (*atfunc)(pr);
- g = (*atfunc)(pg);
- b = (*atfunc)(pb);
- PPM_ASSIGN( *op, r, g, b );
- }
- pnm_writepnmrow( stdout, orow, cols, omaxval, oformat, 0 );
- if (irow1 == irows[2])
- {
- irow1 = irows[0];
- irow2 = irows[1];
- irow0 = irows[2];
- }
- else if (irow1 == irows[1])
- {
- irow2 = irows[0];
- irow0 = irows[1];
- irow1 = irows[2];
- }
- else /* must be at irows[0] */
- {
- irow0 = irows[0];
- irow1 = irows[1];
- irow2 = irows[2];
- }
- }
- }
- else /* Else must be PGM */
- {
- xel *irows[3];
- xel *irow0, *irow1, *irow2, *orow;
- int p[9]; /* 3x3 neighbor pixel values */
- int pv;
- int promote;
-
- irows[0] = pnm_allocrow( cols );
- irows[1] = pnm_allocrow( cols );
- irows[2] = pnm_allocrow( cols );
- irow0 = irows[0];
- irow1 = irows[1];
- irow2 = irows[2];
- orow = pnm_allocrow( cols );
- /* we scale maxval to omaxval */
- promote = ( PNM_FORMAT_TYPE(format) != PNM_FORMAT_TYPE(oformat) );
-
- for ( row = 0; row < rows; row++ )
- {
- int po,no; /* offsets for left and right colums in 3x3 */
- register xel *ip0, *ip1, *ip2, *op;
-
- if (row == 0)
- {
- irow0 = irow1;
- pnm_readpnmrow( ifp, irow1, cols, maxval, format );
- if ( promote )
- pnm_promoteformatrow( irow1, cols, maxval, format, maxval, oformat );
- }
- if (row == (rows-1))
- irow2 = irow1;
- else
- {
- pnm_readpnmrow( ifp, irow2, cols, maxval, format );
- if ( promote )
- pnm_promoteformatrow( irow2, cols, maxval, format, maxval, oformat );
- }
-
- for (col = cols-1,po= col>0?1:0,no=0,ip0=irow0,ip1=irow1,ip2=irow2,op=orow;
- col >= 0;
- col--,ip0++,ip1++,ip2++,op++, no |= 1,po = col!= 0 ? po : 0)
- {
- /* grab 3x3 pixel values */
- p[0] = PNM_GET1( *ip1 );
- p[1] = PNM_GET1( *(ip1-no) );
- p[5] = PNM_GET1( *(ip1+po) );
- p[3] = PNM_GET1( *(ip2) );
- p[2] = PNM_GET1( *(ip2-no) );
- p[4] = PNM_GET1( *(ip2+po) );
- p[6] = PNM_GET1( *(ip0+po) );
- p[8] = PNM_GET1( *(ip0-no) );
- p[7] = PNM_GET1( *(ip0) );
- pv = (*atfunc)(p);
- PNM_ASSIGN1( *op, pv );
- }
- pnm_writepnmrow( stdout, orow, cols, omaxval, oformat, 0 );
- if (irow1 == irows[2])
- {
- irow1 = irows[0];
- irow2 = irows[1];
- irow0 = irows[2];
- }
- else if (irow1 == irows[1])
- {
- irow2 = irows[0];
- irow0 = irows[1];
- irow1 = irows[2];
- }
- else /* must be at irows[0] */
- {
- irow0 = irows[0];
- irow1 = irows[1];
- irow2 = irows[2];
- }
- }
- }
- pm_close( ifp );
-
- exit( 0 );
- }
-
- #define MXIVAL PPM_MAXMAXVAL /* maximum input value */
- #define NOIVAL (MXIVAL + 1) /* number of possible input values */
-
- #define SCALEB 8 /* scale bits */
- #define SCALE (1 << SCALEB) /* scale factor */
- #define MXSVAL (MXIVAL * SCALE) /* maximum scaled values */
-
- #define CSCALEB 2 /* coarse scale bits */
- #define CSCALE (1 << CSCALEB) /* coarse scale factor */
- #define MXCSVAL (MXIVAL * CSCALE) /* maximum coarse scaled values */
- #define NOCSVAL (MXCSVAL + 1) /* number of coarse scaled values */
- #define SCTOCSC(x) ((x) >> (SCALEB - CSCALEB)) /* convert from scaled to coarse scaled */
- #define CSCTOSC(x) ((x) << (SCALEB - CSCALEB)) /* convert from course scaled to scaled */
-
- #ifndef MAXINT
- # define MAXINT 0x7fffffff /* assume this is a 32 bit machine */
- #endif
-
- /* round and scale floating point to scaled integer */
- #define ROUND(x) ((int)(((x) * (double)SCALE) + 0.5))
- /* round and un-scale scaled integer value */
- #define RUNSCALE(x) (((x) + (1 << (SCALEB-1))) >> SCALEB) /* rounded un-scale */
- #define UNSCALE(x) ((x) >> SCALEB)
-
-
- /* We restrict radius to the values: 0.333333 <= radius <= 1.0 */
- /* so that no fewer and no more than a 3x3 grid of pixels around */
- /* the pixel in question needs to be read. Given this, we only */
- /* need 3 or 4 weightings per hexagon, as follows: */
- /* _ _ */
- /* Virtical hex: |_|_| 1 2 */
- /* |X|_| 0 3 */
- /* _ */
- /* _ _|_| 1 */
- /* Middle hex: |_| 1 Horizontal hex: |X|_| 0 2 */
- /* |X| 0 |_| 3 */
- /* |_| 2 */
-
- /* all filters */
- int V0[NOIVAL],V1[NOIVAL],V2[NOIVAL],V3[NOIVAL]; /* vertical hex */
- int M0[NOIVAL],M1[NOIVAL],M2[NOIVAL]; /* middle hex */
- int H0[NOIVAL],H1[NOIVAL],H2[NOIVAL],H3[NOIVAL]; /* horizontal hex */
-
- /* alpha trimmed and edge enhancement only */
- int ALFRAC[NOIVAL * 8]; /* fractional alpha divider table */
-
- /* optimal estimation only */
- int AVEDIV[7 * NOCSVAL]; /* divide by 7 to give average value */
- int SQUARE[2 * NOCSVAL]; /* scaled square lookup table */
-
- /* Table initialisation function - return alpha range */
- int
- atfilt_setup(alpha,radius,maxscale)
- double alpha,radius,maxscale; /* alpha, radius and amount to scale input pixel values */
- {
- /* other function variables */
- int alpharange; /* alpha range value 0 - 3 */
- double meanscale; /* scale for finding mean */
- double mmeanscale; /* scale for finding mean - midle hex */
- double alphafraction; /* fraction of next largest/smallest to subtract from sum */
-
- /* do setup */
-
- if (alpha >= 0.0 && alpha < 1.0) /* alpha trimmed mean */
- {
- double noinmean;
- /* number of elements (out of a possible 7) used in the mean */
- noinmean = ((0.5 - alpha) * 12.0) + 1.0;
- mmeanscale = meanscale = maxscale/noinmean;
- if (alpha == 0.0) /* mean filter */
- {
- alpharange = 0;
- alphafraction = 0.0; /* not used */
- }
- else if (alpha < (1.0/6.0)) /* mean of 5 to 7 middle values */
- {
- alpharange = 1;
- alphafraction = (7.0 - noinmean)/2.0;
- }
- else if (alpha < (1.0/3.0)) /* mean of 3 to 5 middle values */
- {
- alpharange = 2;
- alphafraction = (5.0 - noinmean)/2.0;
- }
- else /* mean of 1 to 3 middle values */
- { /* alpha == 0.5 == median filter */
- alpharange = 3;
- alphafraction = (3.0 - noinmean)/2.0;
- }
- }
- else if (alpha > 0.5) /* optimal estimation - alpha controls noise variance threshold. */
- {
- int i;
- double noinmean = 7.0;
- alpharange = 5; /* edge enhancement function */
- alpha -= 1.0; /* normalise it to 0.0 -> 1.0 */
- mmeanscale = meanscale = maxscale; /* compute scaled hex values */
- alphafraction = 1.0/noinmean; /* Set up 1:1 division lookup - not used */
- noisevariance = alpha * (double)omaxval;
- noisevariance = noisevariance * noisevariance / 8.0; /* estimate of noise variance */
- /* set yp optimal estimation specific stuff */
- for (i=0; i < (7 * NOCSVAL); i++) /* divide scaled value by 7 lookup */
- {
- AVEDIV[i] = CSCTOSC(i)/7; /* scaled divide by 7 */
- }
- for (i=0; i < (2 * NOCSVAL); i++) /* compute square and rescale by (val >> (2 * SCALEB + 2)) table */
- {
- int val;
- val = CSCTOSC(i - NOCSVAL); /* NOCSVAL offset to cope with -ve input values */
- SQUARE[i] = (val * val) >> (2 * SCALEB + 2);
- }
- }
- else /* edge enhancement function */
- {
- alpharange = 4; /* edge enhancement function */
- alpha = -alpha; /* turn it the right way up */
- meanscale = maxscale * (-alpha/((1.0 - alpha) * 7.0)); /* mean of 7 and scaled by -alpha/(1-alpha) */
- mmeanscale = maxscale * (1.0/(1.0 - alpha) + meanscale); /* middle pixel has 1/(1-alpha) as well */
- alphafraction = 0.0; /* not used */
- }
-
- /* Setup pixel weighting tables - note we pre-compute mean division here too. */
- {
- int i;
- double hexhoff,hexvoff;
- double tabscale,mtabscale;
- double v0,v1,v2,v3,m0,m1,m2,me0,me1,me2,h0,h1,h2,h3;
-
- hexhoff = radius/2; /* horizontal offset of virtical hex centers */
- hexvoff = 3.0 * radius/sqrt(12.0); /* virtical offset of virtical hex centers */
- /* scale tables to normalise by hexagon area, and number of hexes used in mean */
- tabscale = meanscale / (radius * hexvoff);
- mtabscale = mmeanscale / (radius * hexvoff);
- v0 = hex_area(0.0,0.0,hexhoff,hexvoff,radius) * tabscale;
- v1 = hex_area(0.0,1.0,hexhoff,hexvoff,radius) * tabscale;
- v2 = hex_area(1.0,1.0,hexhoff,hexvoff,radius) * tabscale;
- v3 = hex_area(1.0,0.0,hexhoff,hexvoff,radius) * tabscale;
- m0 = hex_area(0.0,0.0,0.0,0.0,radius) * mtabscale;
- m1 = hex_area(0.0,1.0,0.0,0.0,radius) * mtabscale;
- m2 = hex_area(0.0,-1.0,0.0,0.0,radius) * mtabscale;
- h0 = hex_area(0.0,0.0,radius,0.0,radius) * tabscale;
- h1 = hex_area(1.0,1.0,radius,0.0,radius) * tabscale;
- h2 = hex_area(1.0,0.0,radius,0.0,radius) * tabscale;
- h3 = hex_area(1.0,-1.0,radius,0.0,radius) * tabscale;
-
- for (i=0; i <= MXIVAL; i++)
- {
- double fi;
- fi = (double)i;
- V0[i] = ROUND(fi * v0);
- V1[i] = ROUND(fi * v1);
- V2[i] = ROUND(fi * v2);
- V3[i] = ROUND(fi * v3);
- M0[i] = ROUND(fi * m0);
- M1[i] = ROUND(fi * m1);
- M2[i] = ROUND(fi * m2);
- H0[i] = ROUND(fi * h0);
- H1[i] = ROUND(fi * h1);
- H2[i] = ROUND(fi * h2);
- H3[i] = ROUND(fi * h3);
- }
- /* set up alpha fraction lookup table used on big/small */
- for (i=0; i < (NOIVAL * 8); i++)
- {
- ALFRAC[i] = ROUND((double)i * alphafraction);
- }
- }
- return alpharange;
- }
-
-
- /* Core pixel processing function - hand it 3x3 pixels and return result. */
- /* Mean filter */
- int
- atfilt0(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int retv;
- /* map to scaled hexagon values */
- retv = M0[p[0]] + M1[p[3]] + M2[p[7]];
- retv += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- retv += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- retv += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- retv += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- retv += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- retv += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- return UNSCALE(retv);
- }
-
- /* Mean of 5 - 7 middle values */
- int
- atfilt1(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
- /* 1 0 4 */
- /* 6 5 */
- int big,small;
- /* map to scaled hexagon values */
- h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
- h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- /* sum values and also discover the largest and smallest */
- big = small = h0;
- #define CHECK(xx) \
- h0 += xx; \
- if (xx > big) \
- big = xx; \
- else if (xx < small) \
- small = xx;
- CHECK(h1)
- CHECK(h2)
- CHECK(h3)
- CHECK(h4)
- CHECK(h5)
- CHECK(h6)
- #undef CHECK
- /* Compute mean of middle 5-7 values */
- return UNSCALE(h0 -ALFRAC[(big + small)>>SCALEB]);
- }
-
- /* Mean of 3 - 5 middle values */
- int
- atfilt2(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
- /* 1 0 4 */
- /* 6 5 */
- int big0,big1,small0,small1;
- /* map to scaled hexagon values */
- h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
- h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- /* sum values and also discover the 2 largest and 2 smallest */
- big0 = small0 = h0;
- small1 = MAXINT;
- big1 = 0;
- #define CHECK(xx) \
- h0 += xx; \
- if (xx > big1) \
- { \
- if (xx > big0) \
- { \
- big1 = big0; \
- big0 = xx; \
- } \
- else \
- big1 = xx; \
- } \
- if (xx < small1) \
- { \
- if (xx < small0) \
- { \
- small1 = small0; \
- small0 = xx; \
- } \
- else \
- small1 = xx; \
- }
- CHECK(h1)
- CHECK(h2)
- CHECK(h3)
- CHECK(h4)
- CHECK(h5)
- CHECK(h6)
- #undef CHECK
- /* Compute mean of middle 3-5 values */
- return UNSCALE(h0 -big0 -small0 -ALFRAC[(big1 + small1)>>SCALEB]);
- }
-
- /* Mean of 1 - 3 middle values. If only 1 value, then this is a median filter. */
- int
- atfilt3(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
- /* 1 0 4 */
- /* 6 5 */
- int big0,big1,big2,small0,small1,small2;
- /* map to scaled hexagon values */
- h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
- h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- /* sum values and also discover the 3 largest and 3 smallest */
- big0 = small0 = h0;
- small1 = small2 = MAXINT;
- big1 = big2 = 0;
- #define CHECK(xx) \
- h0 += xx; \
- if (xx > big2) \
- { \
- if (xx > big1) \
- { \
- if (xx > big0) \
- { \
- big2 = big1; \
- big1 = big0; \
- big0 = xx; \
- } \
- else \
- { \
- big2 = big1; \
- big1 = xx; \
- } \
- } \
- else \
- big2 = xx; \
- } \
- if (xx < small2) \
- { \
- if (xx < small1) \
- { \
- if (xx < small0) \
- { \
- small2 = small1; \
- small1 = small0; \
- small0 = xx; \
- } \
- else \
- { \
- small2 = small1; \
- small1 = xx; \
- } \
- } \
- else \
- small2 = xx; \
- }
- CHECK(h1)
- CHECK(h2)
- CHECK(h3)
- CHECK(h4)
- CHECK(h5)
- CHECK(h6)
- #undef CHECK
- /* Compute mean of middle 1-3 values */
- return UNSCALE(h0 -big0 -big1 -small0 -small1 -ALFRAC[(big2 + small2)>>SCALEB]);
- }
-
- /* Edge enhancement */
- /* notice we use the global omaxval */
- int
- atfilt4(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int hav;
- /* map to scaled hexagon values and compute enhance value */
- hav = M0[p[0]] + M1[p[3]] + M2[p[7]];
- hav += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- hav += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- hav += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- hav += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- hav += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- hav += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- if (hav < 0)
- hav = 0;
- hav = UNSCALE(hav);
- if (hav > omaxval)
- hav = omaxval;
- return hav;
- }
-
- /* Optimal estimation - do smoothing in inverse proportion */
- /* to the local variance. */
- /* notice we use the globals noisevariance and omaxval*/
- int
- atfilt5(p)
- int *p; /* 9 pixel values from 3x3 neighbors */
- {
- int mean,variance,temp;
- int h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
- /* 1 0 4 */
- /* 6 5 */
- /* map to scaled hexagon values */
- h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
- h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
- h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
- h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
- h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
- h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
- h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
- mean = h0 + h1 + h2 + h3 + h4 + h5 + h6;
- mean = AVEDIV[SCTOCSC(mean)]; /* compute scaled mean by dividing by 7 */
- temp = (h1 - mean); variance = SQUARE[NOCSVAL + SCTOCSC(temp)]; /* compute scaled variance */
- temp = (h2 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)]; /* and rescale to keep */
- temp = (h3 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)]; /* within 32 bit limits */
- temp = (h4 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
- temp = (h5 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
- temp = (h6 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
- temp = (h0 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)]; /* (temp = h0 - mean) */
- if (variance != 0) /* avoid possible divide by 0 */
- temp = mean + (variance * temp) / (variance + noisevariance); /* optimal estimate */
- else temp = h0;
- if (temp < 0)
- temp = 0;
- temp = RUNSCALE(temp);
- if (temp > omaxval)
- temp = omaxval;
- return temp;
- }
-
- /* ************************************************** */
- /* Hexagon intersecting square area functions */
- /* Compute the area of the intersection of a triangle */
- /* and a rectangle */
-
- double triang_area ARGS((double, double, double, double, double, double, double, double, int));
- double rectang_area ARGS((double, double, double, double, double, double, double, double));
-
- /* Triangle orientation is per geometric axes (not graphical axies) */
-
- #define NW 0 /* North west triangle /| */
- #define NE 1 /* North east triangle |\ */
- #define SW 2 /* South west triangle \| */
- #define SE 3 /* South east triangle |/ */
- #define STH 2
- #define EST 1
-
- #define SWAPI(a,b) (t = a, a = -b, b = -t)
-
- /* compute the area of overlap of a hexagon diameter d, */
- /* centered at hx,hy, with a unit square of center sx,sy. */
- double
- hex_area(sx,sy,hx,hy,d)
- double sx,sy; /* square center */
- double hx,hy,d; /* hexagon center and diameter */
- {
- double hx0,hx1,hx2,hy0,hy1,hy2,hy3;
- double sx0,sx1,sy0,sy1;
-
- /* compute square co-ordinates */
- sx0 = sx - 0.5;
- sy0 = sy - 0.5;
- sx1 = sx + 0.5;
- sy1 = sy + 0.5;
- /* compute hexagon co-ordinates */
- hx0 = hx - d/2.0;
- hx1 = hx;
- hx2 = hx + d/2.0;
- hy0 = hy - 0.5773502692 * d; /* d / sqrt(3) */
- hy1 = hy - 0.2886751346 * d; /* d / sqrt(12) */
- hy2 = hy + 0.2886751346 * d; /* d / sqrt(12) */
- hy3 = hy + 0.5773502692 * d; /* d / sqrt(3) */
-
- return
- triang_area(sx0,sy0,sx1,sy1,hx0,hy2,hx1,hy3,NW) +
- triang_area(sx0,sy0,sx1,sy1,hx1,hy2,hx2,hy3,NE) +
- rectang_area(sx0,sy0,sx1,sy1,hx0,hy1,hx2,hy2) +
- triang_area(sx0,sy0,sx1,sy1,hx0,hy0,hx1,hy1,SW) +
- triang_area(sx0,sy0,sx1,sy1,hx1,hy0,hx2,hy1,SE);
- }
-
- double
- triang_area(rx0,ry0,rx1,ry1,tx0,ty0,tx1,ty1,tt)
- double rx0,ry0,rx1,ry1; /* rectangle boundaries */
- double tx0,ty0,tx1,ty1; /* triangle boundaries */
- int tt; /* triangle type */
- {
- double a,b,c,d;
- double lx0,ly0,lx1,ly1;
- /* Convert everything to a NW triangle */
- if (tt & STH)
- {
- double t;
- SWAPI(ry0,ry1);
- SWAPI(ty0,ty1);
- }
- if (tt & EST)
- {
- double t;
- SWAPI(rx0,rx1);
- SWAPI(tx0,tx1);
- }
- /* Compute overlapping box */
- if (tx0 > rx0)
- rx0 = tx0;
- if (ty0 > ry0)
- ry0 = ty0;
- if (tx1 < rx1)
- rx1 = tx1;
- if (ty1 < ry1)
- ry1 = ty1;
- if (rx1 <= rx0 || ry1 <= ry0)
- return 0.0;
- /* Need to compute diagonal line intersection with the box */
- /* First compute co-efficients to formulas x = a + by and y = c + dx */
- b = (tx1 - tx0)/(ty1 - ty0);
- a = tx0 - b * ty0;
- d = (ty1 - ty0)/(tx1 - tx0);
- c = ty0 - d * tx0;
-
- /* compute top or right intersection */
- tt = 0;
- ly1 = ry1;
- lx1 = a + b * ly1;
- if (lx1 <= rx0)
- return (rx1 - rx0) * (ry1 - ry0);
- else if (lx1 > rx1) /* could be right hand side */
- {
- lx1 = rx1;
- ly1 = c + d * lx1;
- if (ly1 <= ry0)
- return (rx1 - rx0) * (ry1 - ry0);
- tt = 1; /* right hand side intersection */
- }
- /* compute left or bottom intersection */
- lx0 = rx0;
- ly0 = c + d * lx0;
- if (ly0 >= ry1)
- return (rx1 - rx0) * (ry1 - ry0);
- else if (ly0 < ry0) /* could be right hand side */
- {
- ly0 = ry0;
- lx0 = a + b * ly0;
- if (lx0 >= rx1)
- return (rx1 - rx0) * (ry1 - ry0);
- tt |= 2; /* bottom intersection */
- }
-
- if (tt == 0) /* top and left intersection */
- { /* rectangle minus triangle */
- return ((rx1 - rx0) * (ry1 - ry0))
- - (0.5 * (lx1 - rx0) * (ry1 - ly0));
- }
- else if (tt == 1) /* right and left intersection */
- {
- return ((rx1 - rx0) * (ly0 - ry0))
- + (0.5 * (rx1 - rx0) * (ly1 - ly0));
- }
- else if (tt == 2) /* top and bottom intersection */
- {
- return ((rx1 - lx1) * (ry1 - ry0))
- + (0.5 * (lx1 - lx0) * (ry1 - ry0));
- }
- else /* tt == 3 */ /* right and bottom intersection */
- { /* triangle */
- return (0.5 * (rx1 - lx0) * (ly1 - ry0));
- }
- }
-
- /* Compute rectangle area */
- double
- rectang_area(rx0,ry0,rx1,ry1,tx0,ty0,tx1,ty1)
- double rx0,ry0,rx1,ry1; /* rectangle boundaries */
- double tx0,ty0,tx1,ty1; /* rectangle boundaries */
- {
- /* Compute overlapping box */
- if (tx0 > rx0)
- rx0 = tx0;
- if (ty0 > ry0)
- ry0 = ty0;
- if (tx1 < rx1)
- rx1 = tx1;
- if (ty1 < ry1)
- ry1 = ty1;
- if (rx1 <= rx0 || ry1 <= ry0)
- return 0.0;
- return (rx1 - rx0) * (ry1 - ry0);
- }
-
-