home *** CD-ROM | disk | FTP | other *** search
- #ifndef __COMPLEX__
- #define __COMPLEX__
-
- /************************************************************
-
- Created: Monday, June 27, 1988 12:42:53 PM
- Complex.h
- C Interface to the Macintosh Libraries
-
-
- Copyright Apple Computer, Inc. 1985-1988
- All rights reserved.
-
- ************************************************************/
-
- #ifndef __SANE__
- #include <SANE.h>
- #endif
-
- struct complex;
-
- /*
- NOTE to users of the complex class stream i/o functionality:
-
- In order to use the complex stream functionality prototyped by the two following
- function declarations one must include either <IOStream.h> or <Stream.h> before
- including <Complex.h>.
-
- */
- #ifdef __IOSTREAM__
- ostream& operator<<(ostream&, complex);
- istream& operator>>(istream&, complex&);
- #endif
-
- struct complex {
- extended re;
- extended im;
-
- #ifdef __cplusplus
-
- complex() { re =0.0; im =0.0; }
- complex(extended r, extended i =0.0) { re =r; im =i; }
-
- friend extended real(const complex);
- friend extended imag(const complex);
- friend extended abs(complex);
- friend extended norm(complex);
- friend extended arg(complex);
-
- friend complex acos(complex);
- friend complex acosh(complex);
- friend complex asin(complex);
- friend complex asinh(complex);
- friend complex atan(complex);
- friend complex atanh(complex);
- friend complex conj(complex);
- friend complex cos(complex);
- friend complex cosh(complex);
- friend complex exp(complex);
- friend complex log(complex);
- friend complex pow(complex, complex);
- friend complex pow(complex, long);
- friend complex pow(complex, extended);
- friend complex pow(extended, complex);
- friend complex polar(extended, extended);
- friend complex sin(complex);
- friend complex sinh(complex);
- friend complex sqrt(complex);
- friend complex sqr(complex);
- friend complex tan(complex);
- friend complex tanh(complex);
- friend complex operator +(complex, complex);
- friend complex operator -(complex, complex);
- friend complex operator -(complex);
- friend complex operator *(complex, complex);
- friend complex operator *(complex, extended);
- friend complex operator *(extended, complex);
- friend complex operator /(complex, complex);
- friend complex operator /(complex, extended);
- friend complex operator /(extended, complex);
- friend int operator ==(complex, complex);
- friend int operator !=(complex, complex);
- complex operator +=(complex);
- complex operator -=(complex);
- complex operator *=(complex);
- complex operator *=(extended);
- complex operator /=(complex);
- complex operator /=(extended);
-
- #endif
- };
-
-
-
- #ifndef __cplusplus
- typedef struct complex complex;
- #else
- extern "C" {
- #endif
-
- complex cadd( complex x, complex y );
- complex csub( complex x, complex y );
- complex cmul( complex x, complex y );
- complex cdiv( complex x, complex y );
- complex xdivc( extended x, complex y );
- complex csqrt( complex z );
- complex csin( complex z );
- complex ccos( complex z );
- complex csquare( complex z );
- complex cexp( complex z );
- complex clog( complex z );
- complex cepwry( extended x, complex y );
- complex cxpwri( complex x, long y );
- complex cxpwre( complex x, extended y );
- complex cxpwry( complex x, complex y );
- complex csinh( complex z );
- complex ccosh( complex z );
- complex ctanh( complex z );
- complex ctan( complex z );
- complex casin( complex z );
- complex casinh( complex z );
- complex cacos( complex z );
- complex cacosh( complex z );
- complex catan( complex z );
- complex catanh( complex z );
- complex cconj( complex z );
-
- extended cabs( complex z );
- extended carg( complex z );
-
- #ifdef __cplusplus
- } // close the extern "C" declaration
-
- inline extended real(const complex a) { return a.re; }
- inline extended imag(const complex a) { return a.im; }
- inline extended abs(complex a) { return cabs(a); }
- inline extended norm(complex a) { return a.re*a.re+a.im*a.im; }
- inline extended arg(complex a) { return carg(a); }
- inline complex acos(complex a) { return cacos(a); }
- inline complex acosh(complex a) { return cacosh(a); }
- inline complex asin(complex a) { return casin(a); }
- inline complex asinh(complex a) { return casinh(a); }
- inline complex atan(complex a) { return catan(a); }
- inline complex atanh(complex a) { return catanh(a); }
- inline complex conj(complex a) { return complex(a.re, -a.im); }
- inline complex cos(complex a) { return ccos(a); }
- inline complex cosh(complex a) { return ccosh(a); }
- inline complex exp(complex a) { return cexp(a); }
- inline complex log(complex a) { return clog(a); }
- inline complex pow(complex a, complex b) { return cxpwry(a, b); }
- inline complex pow(complex a, long b) { return cxpwri(a, b); }
- inline complex pow(complex a, extended b) { return cxpwre(a, b); }
- inline complex pow(extended a, complex b) { return cepwry(a, b); }
- inline complex polar(extended r, extended theta) { return complex(r*cos(theta), r*sin(theta) ); }
- inline complex sin(complex a) { return csin(a); }
- inline complex sinh(complex a) { return csinh(a); }
- inline complex sqrt(complex a) { return csqrt(a); }
- inline complex sqr(complex a) { return csquare(a); }
- inline complex tan(complex a) { return ctan(a); }
- inline complex tanh(complex a) { return ctanh(a); }
- inline complex operator +(complex a, complex b) { return complex(a.re+b.re, a.im+b.im); }
- inline complex operator -(complex a,complex b) { return complex(a.re-b.re, a.im-b.im); }
- inline complex operator -(complex a) { return complex(-a.re, -a.im); }
- inline complex operator *(complex a, complex b) { return cmul(a, b); }
- inline complex operator *(complex a, extended b) { return complex(a.re*b, a.im*b); }
- inline complex operator *(extended a, complex b) { return complex(a*b.re, a*b.im); }
- inline complex operator /(complex a, complex b) { return cdiv(a, b); }
- inline complex operator /(complex a, extended b) { return complex(a.re/b, a.im/b); }
- inline complex operator /(extended a, complex b) { return xdivc(a, b); }
- inline int operator ==(complex a, complex b) { return (a.re==b.re && a.im==b.im); }
- inline int operator !=(complex a, complex b) { return (a.re!=b.re || a.im!=b.im); }
-
- inline complex complex::operator +=(complex a)
- {
- re += a.re;
- im += a.im;
- return complex(re, im);
- }
-
- inline complex complex::operator -=(complex a)
- {
- re -= a.re;
- im -= a.im;
- return complex(re, im);
- }
-
- inline complex complex::operator *=(complex a)
- {
- return *this = cmul(*this, a);
- }
-
- inline complex complex::operator *=(extended a)
- {
- re *= a;
- im *= a;
- return complex(re, im);
- }
-
- inline complex complex::operator /=(complex a)
- {
- return *this = cdiv(*this, a);
- }
-
- inline complex complex::operator /=(extended a)
- {
- re /= a;
- im /= a;
- return complex(re, im);
- }
-
- #endif
-
- #endif