home *** CD-ROM | disk | FTP | other *** search
-
-
- RealFun: Real & Complex Math Libraries for QuickBASIC
- COMPTOP.TXT
-
- All the functions and subprograms included in the compfun library, organized
- by topic:
-
- Minimum & Maximum (real only)
- Usage Inputs Outputs Notes
- z = amin(x, y) x, y; sp z, sp min of x, y
- z# = dmin(x#, y#) x#, y#; dp z#, dp min of x#, y#
- z = amax(x, y) x, y; sp z, sp max of x, y
- z# = dmax(x#, y#) x#, y#; dp z#, dp max of x#, y#
-
- Cosine
- Usage Inputs Outputs Notes
- y = COS(x) x, sp y, sp x in radians
- y# = COS(X#) x#, dp y#, dp x# in radians
- y = cosd(x) x, sp y, sp x in degrees
- y# = dcosd(x#) x#, dp y#, dp x# in degrees
- call ccos(x, y, u, v) x, y; sp u, v; sp complex
- call cdcos(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Sine
- Usage Inputs Outputs Notes
- y = SIN(x) x, sp y, sp x in radians
- y# = SIN(X#) x#, dp y#, dp x# in radians
- y = sind(x) x, sp y, sp x in degrees
- y# = dsind(x#) x#, dp y#, dp x# in degrees
- call csin(x, y, u, v) x, y; sp u, v; sp complex
- call cdsin(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Tangent
-
- Usage Inputs Outputs Notes
- y = TAN(x) x, sp y, sp x in radians
- y# = TAN(X#) x#, dp y#, dp x# in radians
- y = tand(x) x, sp y, sp x in degrees
- y# = dtand(x#) x#, dp y#, dp x# in degrees
- call ctan(x, y, u, v) x, y; sp u, v; sp complex
- call cdtan(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Cosine
-
- Usage Inputs Outputs Notes
- y = acos(x) x, sp y, sp y in radians
- y = acosd(x) x, sp y, sp y in degrees
- y# = dacos(x#) x#, dp y#, dp y# in radians
- y# = dacosd(x#) x#, dp y#, dp y# in degrees
- call cacos(x, y, u, v) x, y; sp u, v; sp complex
- call cdacos(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Sine
-
- Usage Inputs Outputs Notes
- y = asin(x) x, sp y, sp y in radians
-
- y = asind(x) x, sp y, sp y in degrees
- y# = dasin(x#) x#, dp y#, dp y# in radians
- y# = dasind(x#) x#, dp y#, dp y# in degrees
- call casin(x, y, u, v) x, y; sp u, v; sp complex
- call cdasin(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Tangent
-
- Usage Inputs Outputs Notes
- y = ATN(x) x, sp y, sp y in radians
- y = atnd(x) x, sp y, sp y in degrees
- z = atan(y, x) x, y; sp z, sp z in radians
- use to determine proper quadrant of z
- z = atand(y, x) x, y; sp z, sp z in degrees
- use to determine proper quadrant of z
- y# = ATN(X#) x#, dp y#, dp y# in radians
- y# = datnd(x#) x#, dp y#, dp y# in degrees
- z# = datan#(y#, x#) x#, y#; dp z#, dp z in radians
- use to determine proper quadrant of z#
- z# = datand#(y#, x#) x#, y#; dp z#, dp z in degrees
- use to determine proper quadrant of z#
- call catan(x, y, u, v) x, y; sp u, v; sp complex
- call cdatan(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Hyperbolic Cosine
- Usage Inputs Outputs Notes
- y = cosh(x) x, sp y, sp real
- y# = dcosh(x#) x#, dp y#, dp real
- call ccosh(x, y, u, v) x, y; sp u, v; sp complex
- call cdcosh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Hyperbolic Sine
- Usage Inputs Outputs Notes
- y = sinh(x) x, sp y, sp real
- y# = dsinh(x#) x#, dp y#, dp real
- call csinh(x, y, u, v) x, y; sp u, v; sp complex
- call cdsinh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Hyperbolic Tangent
- Usage Inputs Outputs Notes
- y = tanh(x) x, sp y, sp real
- y# = dtanh(x#) x#, dp y#, dp real
- call ctanh(x, y, u, v) x, y; sp u, v; sp complex
- call cdtanh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Hyperbolic Cosine
- Usage Inputs Outputs Notes
- y = acosh(x) x, sp y, sp real
- y# = dacosh(x#) x#, dp y#, dp real
- call cacosh(x, y, u, v) x, y; sp u, v; sp complex
- call cdacosh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Hyperbolic Sine
- Usage Inputs Outputs Notes
- y = asinh(x) x, sp y, sp real
-
- y# = dasinh(x#) x#, dp y#, dp real
- call casinh(x, y, u, v) x, y; sp u, v; sp complex
- call cdasinh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Inverse Hyperbolic Tangent
- Usage Inputs Outputs Notes
- y = atanh(x) x, sp y, sp real
- y# = datanh(x#) x#, dp y#, dp real
- call catanh(x, y, u, v) x, y; sp u, v; sp complex
- call cdatanh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Modulo
- Usage Inputs Outputs Notes
- y = x MOD k% x, sp; k% int y, sp uses integer
- base only
- y = amod(x, k) x, k; sp y, sp uses any base
- y# = x# MOD k% x, dp; k% int y, dp uses integer
- base only
- y# = dmod(x#, k#) x#, k#; dp y#, dp uses any base
- call cmod(x, y, xk, yk, u, v) x, y, xk, u, v; sp complex base
- yk; sp
- call cdmod(x#, y#, xk#, yk#, x#, y#, xk#, u#, v#; dp complex base
- u#, v#) yk#; dp
- call nearint(x, y, u%, v%) x, y; sp u%, v%; int nearest integer
- (u%, v%)
- call dnearint(x#, y#, u&, v&) x#, y#; dp u&, v&; long nearest integer
- (u&, v&)
-
- Exponentiation & Logarithms
- Usage Inputs Outputs Notes
- y = EXP(x) x, sp y, sp real
- y# = EXP(x#) x#, dp y#, dp real
- call cexp(x, y, u, v) x, y; sp u, v; sp complex
- call cdexp(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
- y = LOG(x) x, sp y, sp real
- y# = LOG(x#) x#, dp y#, dp real
- call clog(x, y, u, v) x, y; sp u, v; sp complex
- call cdlog(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
-
- Multiply & Divide (complex only)
- Usage Inputs Outputs Notes
- call cmult(x1, y1, x2, y2, x1, y1, x2, u, v; dp (x1, y1) *
- u, v) y2; sp (x2, y2)
- call cdmult(x1#, y1#, x2#, x1#, y1#, x2#, u#, v#; dp (x1#, y1#) *
- y2#, u#, v#) y2#; sp (x2#, y2#)
- call cdiv(x1, y1, x2, y2, x1, y1, x2, u, v; dp (x1, y1) /
- u, v) y2; sp (x2, y2)
- call cddiv(x1#, y1#, x2#, x1#, y1#, x2#, u#, v#; dp (x1#, y1#) /
- y2#, u#, v#) y2#; sp (x2#, y2#)
-
- Powers (complex only)
- Usage Inputs Outputs Notes
- call rpower(x, y, p, u, v) x, y, p; sp u, v; sp (x, y) to real
- power p
- call cpower(x, y, px, py, x, y, px, u, v; sp complex power
-
- u, v) py; sp (px, py)
- call drpower(x#, y#, p#, x#, y#, p#; dp u#, v#; dp real power p#
- u#, v#)
- call cdpower(x#, y#, px#, x#, y#, px#, u#, v#; dp complex power
- py#, u#, v#) py#; dp (px#, py#)
-
- Coordinate Conversion (complex only)
- Usage Inputs Outputs Notes
- cabs(x, y, r) x, y; sp r; sp magnitude
- cdabs(x#, y#, r#) x#, y#; dp r#; dp magnitude
- cpolar(x, y, r, t) x, y; sp r, t; sp rect to polar,
- t in radians
- cpolard(x, y, r, t) x, y; sp r, t; sp rect to polar,
- t in degrees
- cdpolar(x#, y#, r#, t#) x#, y#; dp r#, t#; dp rect to polar,
- t in radians
- cdpolard(x#, y#, r#, t#) x#, y#; dp r#, t#; dp rect to polar,
- t in degrees
- ccart(r, t, x, y) r, t; sp x, y; sp polar to rect,
- t in radians
- ccartd(r, t, x, y) r, t; sp x, y; sp polar to rect,
- t in degrees
- cdcart(r#, t#,x#, y#) r#, t#; dp x#, y#; dp polar to rect,
- t in radians
- cdcartd(r#, t#, x#, y#) r#, t#; dp x#, y#; dp polar to rect,
- t in degrees
-
- Notes:
- - Functions listed in UPPER CASE are intrinsic to Quick BASIC, and are
- included here for completeness.
- - The abbreviation sp means single-precision, dp means double-precision.
- - Complex numbers are expressed as (x, y) in rectangular coordinates, where
- x = real part and y = imaginary part. In polar form, r is the
- magnitude or radius, t = the angle (degrees or radians).
-