home *** CD-ROM | disk | FTP | other *** search
- /*
-
- DAYLEN.C - computes the length of the day at any date and latitude
-
- Paul Schlyter, 1989-08-16
-
- (c) Paul Schlyter, 1989
-
- This program may be used by anyone for any purpose, iff:
- 1. it is not being sold for profit
- 2. this notice is not removed
-
- */
-
-
- #include <stdio.h>
- #include <math.h>
-
-
- /* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
- /* (which is equal to 1999 Dec 31, 0h UT) */
-
- #define days_since_2000_Jan_0(y,m,d) \
- (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
-
- /* Some conversion factors between radians and degrees */
-
- #ifndef PI
- #define PI 3.1415926535897932384
- #endif
-
- #define RADEG ( 180.0 / PI )
- #define DEGRAD ( PI / 180.0 )
-
- /* The trigonometric functions in degrees */
-
- #define sind(x) sin((x)*DEGRAD)
- #define cosd(x) cos((x)*DEGRAD)
- #define tand(x) tan((x)*DEGRAD)
-
- #define atand(x) (RADEG*atan(x))
- #define asind(x) (RADEG*asin(x))
- #define acosd(x) (RADEG*acos(x))
- #define atan2d(y,x) (RADEG*atan2(y,x))
-
-
- /* Following are some macros around the "workhorse" function __daylen__ */
- /* They mainly fill in the desired values for the reference altitude */
- /* below the horizon, and also selects whether this altitude should */
- /* refer to the Sun's center or its upper limb. */
-
-
- /* This macro computes the length of the day, from sunrise to sunset. */
- /* Sunrise/set is considered to occur when the Sun's upper limb is */
- /* 35 arc minutes below the horizon (this accounts for the refraction */
- /* of the Earth's atmosphere). */
- #define day_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -35.0/60.0, 1 )
-
- /* This macro computes the length of the day, including civil twilight. */
- /* Civil twilight starts/ends when the Sun's center is 6 degrees below */
- /* the horizon. */
- #define day_civil_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -6.0, 0 )
-
- /* This macro computes the length of the day, incl. nautical twilight. */
- /* Nautical twilight starts/ends when the Sun's center is 12 degrees */
- /* below the horizon. */
- #define day_nautical_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -12.0, 0 )
-
- /* This macro computes the length of the day, incl. astronomical twilight. */
- /* Astronomical twilight starts/ends when the Sun's center is 18 degrees */
- /* below the horizon. */
- #define day_astronomical_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -18.0, 0 )
-
-
- /* Function prototypes */
-
- double __daylen__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb );
-
- void sunpos( double d, double *lon, double *r );
-
- double revolution( double x );
-
-
-
- /* A small test program */
-
- void main(void)
- {
- int year,month,day;
- double lon, lat;
- double daylen, civlen, nautlen, astrlen;
-
- printf( "Longitude (+ is east) and latitude (+ is north) : " );
- scanf( "%lf %lf", &lon, &lat );
-
- for(;;)
- {
- printf( "Input date ( yyyy mm dd ) (ctrl-C exits): " );
- scanf( "%d %d %d", &year, &month, &day );
-
- daylen = day_length(year,month,day,lon,lat);
- civlen = day_civil_twilight_length(year,month,day,lon,lat);
- nautlen = day_nautical_twilight_length(year,month,day,lon,lat);
- astrlen = day_astronomical_twilight_length(year,month,day,
- lon,lat);
-
- printf( "Day length: %5.2f hours\n", daylen );
- printf( "With civil twilight %5.2f hours\n", civlen );
- printf( "With nautical twilight %5.2f hours\n", nautlen );
- printf( "With astronomical twilight %5.2f hours\n", astrlen );
- printf( "Length of twilight: civil %5.2f hours\n",
- (civlen-daylen)/2.0);
- printf( " nautical %5.2f hours\n",
- (nautlen-daylen)/2.0);
- printf( " astronomical %5.2f hours\n",
- (astrlen-daylen)/2.0);
- }
- }
-
-
- /* The "workhorse" function */
-
-
- double __daylen__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb )
- /**********************************************************************/
- /* Note: year,month,date = calendar date, 1801-2099 only. */
- /* Eastern longitude positive, Western longitude negative */
- /* Northern latitude positive, Southern latitude negative */
- /* The longitude value is not critical. Set it to the correct */
- /* longitude if you're picky, otherwise set to to, say, 0.0 */
- /* The latitude however IS critical - be sure to get it correct */
- /* altit = the latitude where the Sun should cross */
- /* Set to -35/60 degrees for rise/set, -6 degrees */
- /* for civil, -12 degrees for nautical and -18 */
- /* degrees for astronomical twilight. */
- /* upper_limb: non-zero -> upper limb, zero -> center */
- /* Set to non-zero (e.g. 1) when computing day length */
- /* and to zero when computing day+twilight length. */
- /**********************************************************************/
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- obl_ecl, /* Obliquity (inclination) of Earth's axis */
- sr, /* Solar distance, astronomical units */
- slon, /* True solar longitude */
- sin_sdecl, /* Sine of Sun's declination */
- cos_sdecl, /* Cosine of Sun's declination */
- sradius, /* Sun's apparent radius */
- t; /* Diurnal arc */
-
- /* Compute d of 12h local mean solar time */
- d = days_since_2000_Jan_0(year,month,day) - lon/360.0;
-
- /* Compute obliquity of ecliptic (inclination of Earth's axis */
- obl_ecl = 23.4393 - 3.563E-7 * d;
-
- /* Compute Sun's position */
- sunpos( d, &slon, &sr );
-
- /* Compute sine and cosine of Sun's declination */
- sin_sdecl = sind(obl_ecl) * sind(slon);
- cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
-
- /* Compute the Sun's apparent radius, degrees */
- sradius = 0.2666 / sr;
-
- /* Do correction to upper limb, if necessary */
- if ( upper_limb )
- altit -= sradius;
-
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitide altit: */
- {
- double cost;
- cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
- ( cosd(lat) * cos_sdecl );
- if ( cost >= 1.0 )
- t = 0.0; /* Sun always below altit */
- else if ( cost <= -1.0 )
- t = 24.0; /* Sun always above altit */
- else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
- }
- return t;
- }
-
-
- /* This function computes the Sun's position at any instant */
-
- void sunpos( double d, double *lon, double *r )
- /******************************************************/
- /* Computes the Sun's ecliptic longitude and distance */
- /* at an instant given in d, number of days since */
- /* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
- /* computed, since it's always very near 0. */
- /******************************************************/
- {
- double M, /* Mean anomaly of the Sun */
- w, /* Mean longitude of perihelion */
- /* Note: Sun's mean longitude = M + w */
- e, /* Eccentricity of Earth's orbit */
- E, /* Eccentric anomaly */
- x, y, /* x, y coordinates in orbit */
- v; /* True anomaly */
-
- /* Compute mean elements */
- M = revolution( 356.0470 + 0.9856002585 * d );
- w = 282.9404 + 4.70935E-5 * d;
- e = 0.016709 - 1.151E-9 * d;
-
- /* Compute true longitude and radius vector */
- E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
- x = cosd(E) - e;
- y = sqrt( 1.0 - e*e ) * sind(E);
- *r = sqrt( x*x + y*y ); /* Solar distance */
- v = atan2d( y, x ); /* True anomaly */
- *lon = v + w; /* True solar longitude */
- if ( *lon >= 360.0 )
- *lon -= 360.0; /* Make it 0..360 degrees */
- }
-
- /******************************************************************/
- /* This function reduces any angle to within the first revolution */
- /* by subtracting or adding even multiples of 360.0 until the */
- /* result is >= 0.0 and < 360.0 */
- /******************************************************************/
-
- #define INV360 ( 1.0 / 360.0 )
-
- double revolution( double x )
- /*****************************************/
- /* Reduce angle to within 0..360 degrees */
- /*****************************************/
- {
- return( x - 360.0 * floor( x * INV360 ) );
- }
-