home *** CD-ROM | disk | FTP | other *** search
Text File | 1992-12-16 | 20.1 KB | 1,001 lines |
- [(ñσ¬k)]
- absolute ┐WÑ▀¬║
- absolutely ┐WÑ▀ªa
- abstract ⌐Γ╢HªW╡ⁿ
- accidence ╗yº╬┼▄ñ╞ñº│W½h
- active ÑD░╩¬║
- active ÑD░╩╗y║A
- actively º@¼░ÑD░╩╗y║A
- adjunct ¬■─▌╗y, ¡╫╣ó╗y
- adverb ░╞╡ⁿ
- affirmative sentence ¬╓⌐wÑy
- affix ╡ⁿ║≤, ▒╡▓K╗y
- afterthought ╕╔ÑR╗í⌐·
- agent noun ªµ¼░¬╠ªW╡ⁿ
- agent ░╩º@¬╠, ªµ¼░¬╠
- agentive ¬φÑ▄ªµ¼░¬╠¬║▒╡├π
- agree ñ@¡P
- alternative conjunction ┐∩╛▄│s▒╡╡ⁿ
- alternative question ┐∩╛▄║├░▌Ñy
- analyze ñ└¬R <Ñy>
- anomalous finite ┼▄½hª│¡¡ªí░╩╡ⁿ
- anomalous ñú│W½h¬║
- antecedent (├÷½Y╡ⁿ¬║) ½e¡z╡ⁿ, Ѳªµ╡ⁿ
- anticipatory ѲªµÑD╡ⁿ
- apodosis (▒°Ñ≤Ñy¬║) ╡▓Ñy
- apostrophe ñW╝╨┬I
- apposition ªP«µ
- article ½a╡ⁿ
- aspect «╔ªí, «╔║A, «╔¼█
- assertive ¬╓⌐wªí¬║
- attraction º╬║AªPñ╞
- attribute ─▌⌐╩¡╫╣ó╗y
- attributive ¡╫╣ó¬║, ¡¡⌐w¬║
- attributive use ¡╫╣óÑ╬¬k
- augmentative ╝Wñj╗y
- auxiliary verb ºU░╩╡ⁿ
- auxiliary ºU░╩╡ⁿ
- bare infinitive ¡∞º╬ñú⌐w╡ⁿ
- base ªr«┌, ╗y╖F
- bound ñú»α│µ┐Wª¿ªr¬║
- case «µ
- case ending ⌐╥ª│«µ¬║ªrº└┼▄ñ╞
- causal ¬φÑ▄¡∞ª]¬║
- causative ¿╧º╨░╩╡ⁿ
- causative ¬φÑ▄¡∞ª]¬║; ¿╧º╨¬║
- clause ñlÑy
- cognate object ªP¿t¿ⁿ╡ⁿ
- cognate ªP╖╜¬║, ªP╗y«┌¬║
- collective ╢░ªXªW╡ⁿ
- combining form ╜╞ªXÑ╬╡ⁿ
- common case │q«µ
- common gender │q⌐╩
- common noun ┤╢│qªW╡ⁿ
- comparative ñ±╕√»┼¬║
- comparison (º╬«e╡ⁿ, ░╞╡ⁿ¬║)ñ±╕√(┼▄ñ╞)
- complement ╕╔╗y
- complete º╣Ñ■¬║
- complex sentence ╜╞Ñy
- composition (ªr¬║)╜╞ªX(¬k), ªXª¿
- compound personal pronoun ╜╞ªXñH║┘ÑNªW╡ⁿ
- compound sentence (╜╞)ªXÑy
- concessive ¬φÑ▄┼²¿B¬║
- concord ñ@¡P
- concrete ¿π┼ΘªW╡ⁿ
- conditional ░▓⌐wÑy, ▒°Ñ≤Ñy [ñlÑy], ░▓│]╗y¬k
- conjugate ªPªr╖╜¬║, ªPªr«┌¬║
- conjunct │s▒╡º╬¬║
- conjunction │s▒╡╡ⁿ
- connective │s╡▓╡ⁿ
- consecutive ¬φÑ▄╡▓¬G¬║
- construction (ñσªr, ╗yÑy¬║)╡▓║c(┼Θ)
- content word ╣Ω╕q╡ⁿ, ╣Ωªr
- continuative ▒╡─≥⌐╩Ñ╬¬k¬║, ½D¡¡¿ε¬║
- contracted ┴Y╡u [¼┘▓ñ] º╬
- coordinate ╣∩╡Ѭ║ªr╡ⁿ
- copula │s├┤├π
- copulative │s├┤├π, ├┤╗y│s▒╡╡ⁿ
- correlative ¼█├÷│s▒╡╡ⁿ
- countable Ñi╝╞ªW╡ⁿ
- dangling participle ñú│s╡▓ñ└╡ⁿ
- decline ░╡(«µ)¬║
- defective ñúº╣Ñ■┼▄ñ╞¬║╗y╡ⁿ
- defective verb ñúº╣Ñ■┼▄ñ╞░╩╡ⁿ
- definite ¡¡⌐w¬║, Ñ[ÑH¡¡⌐w¬║
- definite article ⌐w½a╡ⁿ
- degree »┼
- deictic ¬╜Ñ▄¬║, ¬╜½ⁿ¬║, ½ⁿÑ▄¬║
- demonstrative ½ⁿÑ▄╡ⁿ
- denominative ÑXª█ªW╡ⁿ [º╬«e╡ⁿ] ¬║ªr
- dependent clause ▒q─▌ñlÑy
- determiner ¡¡⌐w╡ⁿ
- diminutive ¬φÑ▄íuñpív¬║ªrº└
- disjunctive ñ╧╖N│s▒╡╡ⁿ
- distributive ¡╙ºO╡ⁿ, ¡╙ºOÑNªW╡ⁿ
- double genitive[possessive] ┬∙¡½⌐╥ª│«µ
- double negative ┬∙¡½º_⌐w
- dual ┬∙╝╞¬║
- elide ¼┘▓ñ <Ñ└¡╡, ¡╡╕`>
- ellipsis ¼┘▓ñ
- embed ┤OñJ, ┤O╢i
- enclitic ¬■─▌¬║
- equivalent ¼█╖φ╣∩└│╗y
- exclamation ┼σ╣─╡ⁿ, ┼σ╣─╕╣
- factitive ¿╧º╨¬║, º@¼░¬║
- feminine │▒⌐╩¬║
- final ¬φÑ▄Ñ╪¬║¬║
- finite ¡¡⌐w¬║
- finite verb ¡¡⌐w░╩╡ⁿ
- first person ▓─ñ@ñH║┘
- flat ¿Sª│ªrº└ [░O╕╣] ¬║
- flection ╡ⁿº└┼▄ñ╞, ⌐}ºΘ
- form word º╬ªí╡ⁿ, ╡Ω╡ⁿ
- form º╬ªí, ╗yº╬, º╬║A
- formative │yªr¬║¡n»└
- full word ╣Ω╡ⁿ, º╣Ñ■╡ⁿ
- function word Ñ\»α╡ⁿ
- function ╛≈»α
- future Ñ╝¿╙¬║
- future perfect Ñ╝¿╙º╣ª¿ªí
- gender ⌐╩
- generic │q║┘¬║
- gerund ░╩ªW╡ⁿ
- gerundive ░╩╡ⁿ¬¼º╬«e╡ⁿ
- govern ╗▌Ñ╬ [¡¡⌐w] <¼Y║╪¿ⁿ╡ⁿ>
- government ñΣ░t
- grammatical gender ╗y¬kñW¬║⌐╩
- grammatical ñσ¬k╜d├Ñ
- group Ñ╤╗y╕s║cª¿¬║
- headword ÑD¡n╡ⁿ
- historic present ╛·Ñv▓{ªb«╔[ªí]
- hypotaxis ¬■─▌(╡▓║c), ¬■─▌ª∞╕m
- ifclause if ñ▐╛╔¬║▒°Ñ≤ [░▓⌐w] ñlÑy
- imperative ¼Φ¿╧¬k¬║
- imperfect Ñ╝º╣ª¿«╔ªí
- impersonal ╡LñH║┘¬║
- impersonally º@¼░╡LñH║┘░╩╡ⁿ [ÑNªW╡ⁿ]
- inceptive ¬φÑ▄░╩º@╢}⌐l¬║, ¬φ⌐l¬║
- indefinite article ñú⌐w½a╡ⁿ
- indefinite ñú⌐w¬║
- independent <ñlÑy> ┐WÑ▀¬║
- indicative ¬╜│»¬k¬║, ▒╘¡z¬k¬║
- indirect ╢í▒╡¬║
- infinite ñú⌐w╡ⁿ¬║
- infinitival ñú⌐w╡ⁿ¬║
- inflect <ªr> ╡oÑ═ñσ¬k┼▄ñ╞
- inflect ┼▄ñ╞..¬║ªrº└, º∩┼▄..¬║╡ⁿº╬
- inflectional (ª│)ªrº└┼▄ñ╞¬║; ºφ┤¡¬║
- intensive Ñ[▒j╗y«≡¬║ªr
- interjection ╖P╣─╡ⁿ
- interrogation mark [point] (║├)░▌╕╣
- introduce <│s▒╡╡ⁿ╡Ñ> ñ▐╛╔ <ñlÑy>
- inversion ¡╦╕╦(¬k)
- irregular ñú│W½h(┼▄ñ╞)¬║
- iterative ñ╧╜╞┼Θ
- junction │s╡▓
- lexical ªr [├π] ¿σªí¬║, ╣Ω╜Φ
- limiting ¡¡¿ε¬║
- linking verb │s║≤░╩╡ⁿ, │s├┤░╩╡ⁿ
- locative ª∞╕m«µ; ª∞╕m«µñºªr
- main clause ÑD¡nñlÑy
- main verb Ñ╗░╩╡ⁿ, ÑD░╩╡ⁿ
- masculine ╢º⌐╩¬║
- mass noun ╜Φ╢qªW╡ⁿ
- material noun ¬½╜ΦªW╡ⁿ
- metathesis ¡╡ª∞ [ªrª∞] ┬α┼▄
- modality ╗y«≡ [╗y║A] (⌐╩)
- mode (░╩╡ⁿñº)╗y«≡, ╗y║A
- modification ¡╫╣ó, ¡¡⌐w¡¡¿ε
- modifier ¡╫╣ó╗y
- modify ¡╫╣ó [¡¡⌐w] <ªr, Ñy> (ñº╖N╕q)
- morphology º╬║A╛╟, ║c╡ⁿ╛╟
- multiplicative ¡┐╝╞╡ⁿ
- multitude ╜╞╝╞ªW╡ⁿ
- narration ▒╘¡z¬k
- natural gender ª█╡M⌐╩ºO
- negation º_⌐w
- neuter ññ⌐╩¬║
- nexus ▒╘¡z├÷½Y, ÑD╗y¡z╗y¬║├÷½Y
- nominal ªW╡ⁿ╗yÑy
- nominative absolute ╡┤╣∩ñ└╡ⁿñlÑy
- nominative ÑD«µ¬║
- nonassertive ½D┬_⌐w⌐╩¬║
- nonce <ªr, Ñy╡Ñ> ┴{«╔¬║, ¡¡⌐≤╖φ«╔¬║
- notional ¬φÑ▄╖º⌐└¬║; ¬φ╖N¬║
- number ╝╞
- object ¿ⁿ╡ⁿ
- objective ¿ⁿ«µ(¬║ªr)
- objectless ╡L¿ⁿ╡ⁿ¬║
- order ªr¬║▒╞ªCª╕º╟, ªrº╟
- paradigm (╡ⁿ├■¬║)╡ⁿº╬┼▄ñ╞¬φ
- paradigmatic ╡ⁿº╬┼▄ñ╞(¬φ)¬║
- parataxis ¿├ªC(╡▓║c)
- parenthesis ┤íÑy; ┤íñJ╗y
- part ╡ⁿ├■
- participial adjective ñ└╡ⁿº╬«e╡ⁿ
- participial construction ñ└╡ⁿ║cÑy
- participle ñ└╡ⁿ
- partitive ¬φñ└╡ⁿ
- passive │Q░╩¬║
- past participle ╣LÑhñ└╡ⁿ
- past perfect ╣LÑhº╣ª¿ªí
- past ╣LÑh¬║
- perfect tense º╣ª¿ªí
- perfect º╣ª¿¬║
- periphrastic ¿▒╗í¬k¬║
- personal ñH║┘¬║
- personal pronoun ñH║┘ÑN(ªW)╡ⁿ
- phrase ñ∙╗y
- plural ╜╞╝╞
- positive ¡∞»┼
- possessive ⌐╥ª│¬║, ¬φÑ▄⌐╥ª│¬║
- predeterminer ½e(¡¡)⌐w╡ⁿ
- predicate ¡z╡ⁿ, ¡z╗y
- predication ¡z╗y
- preposition ñ╢¿t╡ⁿ
- prescriptive │W╜d⌐╩¬║
- present participle ▓{ªbñ└╡ⁿ
- present perfect ▓{ªbº╣ª¿ªí
- present ▓{ªbªí
- principal ÑD¡n¬║
- privative »╩⌐╩╗y [├π]
- progressive ╢iªµªí¬║
- prolepsis ╣w┤┴¬║╗½╡ⁿ¬k
- pronoun ÑNªW╡ⁿ
- prop word ñΣ¼W╗y; ÑN┤└╡ⁿ
- proper adjective ▒Mª│º╬«e╡ⁿ
- proper noun[name] ▒Mª│ªW╡ⁿ
- protasis (▒°Ñ≤Ñyñl¬║)▒°Ñ≤ñlÑy
- proverb ÑN░╩╡ⁿ
- qualifier ¡╫╣ó╗y
- qualify ¡¡⌐w..¬║╖N╕q, ¡╫╣ó
- quantifier (⌐w)╢q╡ⁿ
- question ║├░▌Ñy
- reciprocal ¼█ñ¼¬║
- reduplication (ªr¡║, ¡╡╕`¬║)¡½╜╞
- reference (ÑNªW╡ⁿ¬║)½ⁿÑ▄, ¬φÑ▄ [to]
- regular ┼▄ñ╞ª││W½h¬║
- reiterative ¬φñ╧┬╨░╩º@ñºªr; ñ╧┬╨╗y
- relational (╣│ñ╢¿t╡ⁿ, │s▒╡╡ⁿ»δªa)
- relative ├÷½Y╡ⁿ; (ñ╫½ⁿ)├÷½YÑNªW╡ⁿ
- reported speech ╢í▒╡▒╘¡z¬k
- represented speech ┤y¡z▒╘¬k
- restrictive ¡¡⌐w¬║, ¡¡¿ε¬║
- retained object ½O»d¿ⁿ╡ⁿ
- rhetorical question ¡╫├π⌐╩░▌Ñy, ñ╧░▌
- second person ▓─ñGñH║┘
- sentence Ñyñl
- sequence «╔║A¬║ñ@¡P [░tªX, ⌐I└│]
- simple ┬▓│µÑy
- singular │µ╝╞; │µ╝╞¬║ªr
- speech ╗y¬k, ▒╘¡z¬k
- split ¿╧<ñú⌐w╡ⁿ>ñ└┬≈
- split infinitive ñ└┬≈ñú⌐w╡ⁿ
- statement ▒╘¡zÑy
- stem ╡ⁿ╖F, ╗y╖F
- strong ░╩╡ⁿ┼▄ñ╞ñú│W½h¬║
- subject ÑD╡ⁿ, ÑD╗y
- subordinate ¬■─▌¬║, ▒q─▌¬║
- subordinative ▒q─▌[¬■─▌]¬║
- substantival ╣ΩªW╡ⁿ¬║, ªW╡ⁿ¬║
- substitute ÑNÑ╬ªr
- suffix ½ß║≤, ªrº└, ▒╡º└╗y
- superlative │╠░¬»┼¬║
- suppositive ¬φÑ▄░▓│]¬║
- syllepsis ¡▌Ñ╬¬k
- syntax (│y)Ñy¬k, Ñyñl║c│y¬k
- tag question ¬■Ñ[░▌Ñy
- take ªrº└Ñ[.., (½ß¡▒)¡nª│..
- temporal «╔ªí[«╔║A]¬║
- termination ªrº└; ▒╡º└├π
- terminative <ªrº└╡Ñ> ¬φñΦªV¬║
- third person ▓─ñTñH║┘
- tmesis ñ└├π¬k, ñ└╗y¬k
- uncountable ñúÑi╝╞ªW╡ⁿ
- understand ╕╔ÑR <ªr>, ¼┘▓ñ <ªr>
- verb ░╩╡ⁿ
- verbal ╖╟░╩╡ⁿ
- verbalize ºΓ..╖φ░╩╡ⁿ¿╧Ñ╬, ¿╧..░╩╡ⁿñ╞
- verbally ╖φº@░╩╡ⁿ; ░╩╡ⁿ»δªa
- voice ╗y║A
- weak «z┼▄ñ╞¬║, ┼▄ñ╞│W½h¬║
- word class ╡ⁿ├■
- word order ªr [╡ⁿ] º╟
- word-formation │yªr(¬k), ║c╡ⁿ(¬k)
- zeugma │mªí¡╫╣ó¬k
-
- [(┤Xª≤)]
- abscissa ╛ε«y╝╨
- adjacent ╛F¿ñ
- body Ñ▀┼Θ
- circumscription Ñ~▒╡, Ñ~ñ┴
- congruity (╣╧º╬¬║)Ñ■╡Ñ
- conoid ╝A└@ª▒¡▒
- construct ╗sº@..╣╧, ╡e..╣╧
- construction º@╣╧(¬k)
- cycloid ┬\╜u, ▒█╜ⁿ╜u
- dodecahedron ñQñG¡▒┼Θ
- ellipsoid ╛≥¡▒; ╛≥▓y
- exterior Ñ~¿ñ
- figure ╣╧º╬
- folium ╕¡º╬╜u
- frustum Ñ¡║I└Y┼Θ, Ñ¡║I└Y╝[ [╗O]
- generation º╬ª¿
- gnomon ºΘ┐kº╬
- helicoid ┴│▒█┼Θ; ┴│▒█¡▒
- helix ┴│▒█╜u
- homology ¼█ªP
- hyperbola ┬∙ª▒╜u
- hypotenuse (¬╜¿ññT¿ñº╬¬║)▒╫├Σ
- inscribe ¿╧ <╢Ω╡Ñ> ñ║▒╡
- intersection ѵ┬I, ѵñe╜u
- locus ¡y╕±
- median ññ╜u
- meet ѵ┬I, ѵ╜u
- ordinate ┴a«y╝╨
- orthographic ¬╜¿ñ¬║, ½½¬╜╜u¬║
- orthography Ñ┐ºδ╝v¬k
- osculate <¡▒, ª▒╜u╡Ñ> ▒Kñ┴
- polar ╖Ñ╜u
- polygon ªh¿ñº╬
- polyhedron ªh¡▒┼Θ
- produce ºΓ <╜u╡Ñ> ⌐╡¬° [ª▄..]
- proof ├╥⌐·
- rhomboid ░╛╡┘º╬, ¬°▒╫ñΦº╬
- ring └⌠, └⌠¡▒, └⌠┼Θ
- sector «░º╬
- segment (╜u)¼qñ}º╬; (╢Ω¬║)⌐╖¼q
- semiellipse Ñb╛≥╢Ω
- side (ñT¿ñº╬╡Ѭ║)├Σ; (Ñ▀┼Θ¬║)¡▒
- similar ¼█ªⁿ¬║
- solid Ñ▀┼Θ
- spheroid ª^┬α╛≥╢Ω┼Θ[¡▒]
- subtend Ñ┐╣∩<⌐╖, ¿ñ>
- surface ¡▒
- term ¼╔¡¡┬I [╜u, ¡▒]
- tetragon Ñ|¿ñº╬, Ñ|├Σº╬
- tetrahedron Ñ|¡▒┼Θ
- torus └⌠¡▒ [┼Θ], └⌠º╬╢Ω»╛ª▒¡▒
- trihedron ñT¡▒┼Θ
- ungula ┐ߺ╬┼Θ; ║I└Y╢Ω└@
- vertex │╗┬I
-
- [(╝╞╛╟)]
- abstract number ñúªW╝╞
- accidental ░╕╡M╗~«t
- acute ╛U¿ñ
- addend Ñ[╝╞
- alternation ┐∙ªC
- analysis ╕╤¬R
- analytics ╕╤¬R╛╟
- angle ¿ñ
- annulus └⌠º╬
- antilogarithm ñ╧╣∩╝╞
- approximate ¬±ªⁿ¡╚
- approximation ¬±ªⁿ¡╚
- Archimedean Ñ⌠ª≤ª│º╟┼Θ¬║
- arithmetical progression ╡Ñ«t»┼╝╞
- augend │QÑ[╝╞
- axiom ñ╜▓z
- base ⌐│├Σ, ⌐│¡▒
- binary digit ñG╢i╝╞ªr
- binary ñG╢i¬k
- binary ñG╢i╝╞
- binomial ñG╢╡ªí
- binomial ñG╢╡ªí¬║
- bisector ñG╡Ññ└╜u
- calculus ╖L┐nñ└╛╟
- cancel »α¼█¼∙
- cancel ¼∙Ñh
- chord ⌐╢
- circulate ┤`└⌠
- circulating ┤`└⌠ñp╝╞
- circulator ┤`└⌠ñp╝╞
- class ╢░ªX
- co- ╛l, ╕╔
- coefficient ½Y╝╞
- combination ▓╒ªX
- common denominator ñ╜ñ└Ñ└
- common divisor ñ╜¼∙╝╞
- common fraction ñ└╝╞
- common multiple ñ╜¡┐╝╞
- common ratio ñ╜ñ±
- common ª@│q¬║, ñ╜..¬║
- commutative ѵ┤½¬║
- complement ╛l╝╞, ╛l¿ñ, ╛l⌐╖
- complementary ╛l¿ñ [⌐╖]
- complemented ª│╛l«µ¬║
- complex fraction ┴cñ└╝╞
- concrete number ªW╝╞
- congruence ┼|ªX, Ñ■╡Ñ; ªP╛l
- congruous Ñ■╡Ѭ║
- conics └@╜u¬k, └@╜u╜╫
- constant ▒`╝╞, ½φ╢q; ▓v
- contact ¼█▒╡, ▒╡─▓
- contain º¿¿ñ, │≥ªφ <╣╧º╬>
- continuum │s─≥▓╬, │¼┴p╢░
- converge ª¼φK
- convergence ª¼φK
- convergent ª¼φK¬║
- coordinate «y╝╨
- corollary ¿t
- correction ╜╒Ñ┐, ¡╫Ñ┐
- cosecant ╛l│╬
- cosine ╛l⌐╢
- cotangent ╛lñ┴
- critical ┴{¼╔¬║
- cube Ñ▀ñΦ, ñTª╕╛¡
- cube Ñ▀ñΦ¬║, ñTª╕╛¡¬║
- cube root Ñ▀ñΦ«┌
- cubic ñTª╕ñΦ╡{ªí; ñTª╕ª▒╜u
- cubic ñTª╕╛¡¬║; Ñ▀ñΦ¬║
- cuboid »xº╬; ¬°ñΦ┼Θ
- curvature ª▒▓v
- cycle ┤`└⌠
- decimal fraction ñp╝╞
- decimal ñQ╢i(¬k)¬║; ñp╝╞¬║
- decreasing ╗╝┤ε¬║
- denominator ñ└Ñ└
- derivative ╛╔¿τ╝╞
- determinant ªµªCªí
- determinate ñw¬╛╝╞¬║
- differential calculus ╖Lñ└(╛╟)
- differential ╖Lñ└
- differentiation ╖Lñ└
- dihedral ñG¡▒¿ñ
- dimension ª╕ñ╕
- discontinuous ñú│s─≥¬║
- discrete ñ└┬≈ [┬≈┤▓] ╢q
- dividend │Q░ú╝╞
- division ░ú¬k
- divisor ░ú╝╞
- duodecimal ñQñG╢i¬k¬║
- eccentric ┬≈ñ▀╢Ω
- elimination «°Ñh
- embed ┤OñJ, ┤O╢i
- equate ¿╧ñG¡╙ÑHñW¬║╝╞¼█╡Ñ
- equation ñΦ╡{ªí, ╡Ѫí
- error ╗~«t
- expand «i╢}
- exponent ½ⁿ╝╞, ╛¡
- expression ªí
- factor ñ└╕╤..¬║ª]╝╞
- factor ª]╝╞, ª]ñl
- factorial ╢Ñ¡╝, ¬Rª]
- factorization ª]╝╞ñ└╕╤¬k
- fluxion ¼y╝╞
- focus ╡J┬I
- formula ñ╜ªí, ªí
- four-dimensional Ñ|║√¬║, Ñ|ª╕ñ╕¬║
- fractional ñ└╝╞¬║
- frame «y╝╨¿t▓╬, ░╤ª╥«y╝╨
- geometric mean ┤Xª≤Ñ¡ºí╝╞, ╡Ññ±ññ╢╡
- geometrical proportion ╡Ññ±
- given ñw¬╛¬║, ░▓│]¬║
- golden section ╢└¬≈ñ└│╬
- group ╕s
- harmonic progression ╜╒⌐M»┼╝╞
- harmonic ╜╒⌐M¬║
- homogeneity ╗⌠⌐╩
- homogeneous ªPª╕¬║
- homologous ¼█ªP¬║
- idempotent ╛¡╡Ñ
- identical ½φ╡Ѫí
- identity ½φ╡Ñ; ½φ╡Ñ¿τ╝╞
- imaginary ╡Ω╝╞¬║
- improper fraction ░▓ñ└╝╞
- incommensurable ╡Lñ╜¼∙╝╞¬║
- index ½ⁿ╝╞; ½ⁿ╝╨
- indivisibility ñú»α░ú║╔
- indivisible ░úñú║╔¬║
- inequality ñú╡Ѫí
- infinitesimal calculus ╖L┐nñ└╛╟
- infinitesimal ╡L¡¡ñp, ╖Ñ╖L¬║
- infinity ╡L¡¡ñj; ╡L¡¡╗╖
- integer ╛π╝╞
- integral calculus ┐nñ└╛╟)
- integral ┐nñ└
- integrate ¿D..¬║┐nñ└
- integration ┐nñ└
- intercept ªb¿Γ┬I╢í║I
- interpolate ┤íñJ, ñ║▒└
- into ░ú..
- invariable ▒`╝╞, ñú┼▄╢q
- inverse ñ╧¿τ╝╞
- inverse ñ╧ñ±¿╥
- involute ║Ѫ∙╜u, ║Ñ╢}╜u
- irrational ╡L▓z╝╞
- irreducible ñú»α¼∙¬║
- line (¬╜)╜u
- linear ñ@ª╕¬║
- linear programming ╜u⌐╩│W╡e
- logarithm ╣∩╝╞
- logarithmic ╣∩╝╞¬║
- long division ¬°░ú¬k
- matrix »x░}
- maximum ╖Ññj
- measure ¼∙╝╞
- median ññª∞╝╞; ññ╜u
- member ñ╕, ├Σ
- mensuration ┤·╢q¬k; ¿D┐n¬k
- middle term ññ╢╡
- minimum ╖Ññp(¡╚)
- minuend │Q┤ε╝╞
- modular ▓v¬║, ╝╥╝╞¬║, ½Y╝╞¬║
- modulus ▓v, ╝╥╝╞, ½Y╝╞
- multiple ªh¡½¬║, ¡┐╝╞¬║
- multiplicand │Q¡╝╝╞
- multiplication ¡╝¬k
- multiplier ¡╝╝╞; ¡╝║Γ╛╣
- multiply ▒N <¼Y╝╞> ¡╝ÑH <¼Y╝╞>
- negative ¡t╝╞
- node ┬I, ╡▓┬I
- nomogram ║Γ╣╧, ªC╜u╣╧
- normal ½½¬╜¬║, Ñ┐ѵ¬║
- normal ¬k╜u, ½½¬╜╜u
- nothing ╣s
- null ╣s¬║
- numerate ┼¬╝╞ªr, ╡{ªí
- numerator ñ└ñl
- oblique ▒╫¿ñ¬║; ▒╫╜u¬║, ▒╫¡▒¬║
- obtuse ╢w¿ñ¬║
- operand ╣B║Γ┼Θ
- operation ╣B║Γ, ║t║Γ
- order ª╕╝╞; ª∞╝╞; ╢Ñ╝╞
- parameter ░╤╝╞
- partial │íñ└ñ└╝╞
- period ┤`└⌠ñp╝╞⌐P┤┴
- permutation ▒╞ªC
- permute ¡½╖s▒╞ªC, ▒╞ªC
- pi ╢Ω⌐P▓v
- place ª∞
- point ┬I
- polynomial ªh╢╡ªí
- positive Ñ┐╝╞; Ñ┐╢q
- postulate ñ╜▓z, ░≥Ñ╗¡∞▓z
- power ¡╝ñΦ, ¡╝╛¡
- prime »└╝╞¬║, ╜Φ╝╞¬║
- primitive ¡∞╜u
- prism ╕W¼W(┼Θ), ¿ñ¼W(┼Θ)
- prismatic ╕W¼W(º╬)¬║, ñT╕Wº╬¬║
- product (¡╝)┐n
- progression »┼╝╞
- proof ┼τ║Γ
- proper fraction »uñ└╝╞
- proportion ñ±¿╥
- proportional ñ±¿╥╢╡
- proposition ⌐R├D; ⌐w▓z
- pyramid ¿ñ└@
- quadratic ñGª╕ñΦ╡{ªí
- quantity ¬φÑ▄╢q¬║╝╞ªr
- quotient ░╙, ░╙╝╞
- radian ⌐╖½╫
- radical «┌¬║
- radical «┌╝╞; «┌╕╣; «┌ªí
- radix «┌¡╚; ░≥╝╞
- ratio ñ±, ñ±¿╥
- rational ª│▓z╝╞
- rationalization ª│▓zñ╞
- rationalize ¿╧..ª¿ª│▓z╝╞ [ª]]
- real ╣Ω╝╞¬║
- recur ┤`└⌠
- recurring ┤`└⌠ñp╝╞
- reduce ▒N..┤½║Γ
- reduction ¼∙ñ└, ┤½║Γ
- reflex angle └u¿ñ
- regular ╡Ñ├Σ╡Ñ¿ñ
- remainder ╛l╝╞
- repeater ┤`└⌠ñp╝╞
- residual │╤╛l; «t
- resolvent ñ└╕╤ªí
- result ╡▓¬G, ╡¬«╫
- resultant ╡▓ªí
- root «┌, «┌╕╣
- rule ñ±¿╥¬║╣B║Γ¬k½h
- salient ÑY¿ñ
- satisfy ║í¿¼..¬║▒°Ñ≤
- sequence º╟ªC
- series »┼╝╞
- set theory ╢░ªX╜╫
- set ╢░ªX
- sexagesimal ñ╗ñQñ└╝╞
- sine Ñ┐⌐╢
- solid Ñ▀┼Θ¬║
- square ª█¡╝, ª¿Ñ¡ñΦ
- square measure Ñ¡ñΦ┐n, ¡▒┐n
- square Ñ¡ñΦ, ñGª╕╛¡
- square number Ñ¡ñΦ╝╞
- square root Ñ¡ñΦ«┌
- subgroup ñl╕s
- subtraction ┤ε¬k
- subtrahend ┤ε╝╞
- supplement ╕╔¿ñ, ╕╔⌐╖
- term ╢╡
- ternary ñT╢i¬║, ñTñ╕¬║
- theorem ⌐w▓z
- theory ..╜╫
- topology ª∞¼█╛╟; ⌐▌╝│╛╟
- transform ¿╧..┼▄┤½, ¿╧..┼▄º╬
- transformation ┼▄┤½, ┼▄º╬
- transpose ºΓ╝╞ªr▓╛╢╡, ┼▄┤½
- transposition ▓╛╢╡
- triangle inequality ñT¿ññú╡Ѫí
- trinomial ñT╢╡ªí
- truncated ║I¬║, ║I└Y┤Xª≤╣╧º╬
- unit ñ@; ¡╙ª∞╝╞
- unity ñ@
- unknown Ñ╝¬╛╝╞
- unknown quantity Ñ╝¬╛╝╞
- value ╝╞¡╚
- vanish ┼▄ª¿╣s
- variable ┼▄╝╞, ┼▄╢q
- vector ªV╢q, Ñ┌╢q
- whole number ╛π╝╞
- x-axis ╛ε╢b, X╢b
- y-axis ┴a╢b, Y ╢b
- z-axis Z ╢b
-
- [(╗y¡╡)]
- acute ªy¡╡▓┼
- affricate ├z└┐¡╡
- affricative ├z└┐¡╡
- alveolar ╛ª╝╤¡╡
- antepenult ¡╦╝╞▓─ñT¡╡╕`
- apical ª▐ªy¡╡
- articulator ╡o¡╡╛╣⌐x
- aspirated «≡¡╡¬║
- assimilation ªPñ╞
- atony ╡L¡½¡╡
- back ª▐«┌¬║
- blade ª▐ñº½e╕¡
- breaking Ñ└¡╡ñ└╡⌡
- breath group ⌐Iºl╕s, «≡╕s
- breath «≡¡╡
- breathe Ñ╬«≡¡╡╡o
- breathy ▒a«≡¡╡¬║
- breve ╡u¡╡▓┼
- central ññª▐¡╡¬║
- clear ╝I½G¬║
- closed ÑHñl¡╡╡▓º└¬║
- consonant ñl¡╡ªrÑ└
- dark ¡╡┐B
- dental ╛ª¡╡
- devocalize ┴n¡╡┼▄¼░╡L┴n
- digraph ñGªXªrÑ└
- diphthong ┬∙Ñ└¡╡
- dissimilation ▓ºñ╞º@Ñ╬
- dorsal ª▐¡I¡╡
- explosion ├z»}
- explosive ├z»}¡╡
- flap ░{¡╡, ⌐τ¡╡
- flat Ñ¡ª▐¬║
- formant ║cº╬ª¿ñ└
- front vowel ½eª▐Ñ└¡╡
- front ½eª▐╡o¡╡¬║
- glide │s▒╡¡╡
- glottal stop ┴n¬∙│¼┬Ω¡╡
- guttural │∩¡╡
- hard ╡w¡╡¬║
- heavy ¡½┼¬¬║
- hiatus Ñ└¡╡╢í╖▓
- high ª▐ª∞░¬¬║
- hushing sound ╝N¡╡
- implode ¿╧ <½╩│¼¡╡> ñ║├z
- implosion (½╩│¼¡╡¬║)ñ║├z
- indeterminate ºt╜kÑ└¡╡
- intervocalic ¿Γ¡╙Ñ└¡╡╢í
- intonation ºφ┤¡, ¡╡╜╒
- intrusive ┤íñJ
- inversion ñ╧┬α
- labial «B¡╡
- labialize Ñ╬«B╡o¡╡
- lateral ░╝¡╡
- lax ªó╜w¬║
- length ¡╡¬°, ¡╡╢q
- liaison │s¡╡
- lingual ª▐¡╡
- lip «B¡╡¬║
- liquid ¼y¡╡
- long ¬°¡╡¬║
- low ª▐└Yª∞╕mºC
- macron ¬°¡╡▓┼╕╣
- monophthong │µÑ└¡╡
- mute │¼┬Ω¡╡
- nasal ╗≤¡╡
- nasalization ╗≤¡╡ñ╞
- neutral ññ⌐╩¬║, ññÑ▀¬║
- notation ┬▓▓ñ╝╨¡╡¬k
- obscure ºt╜kÑ└¡╡¬║
- open vowel ╢}ñfÑ└¡╡
- penult ¡╦╝╞▓─ñG¡╡╕`
- phonate ╡o┴n, ╡o¡╡
- phonation ╡o¡╡, ╡o┴n
- phoneme ¡╡ª∞, ¡╡»└
- polyphone ªh¡╡ªrÑ└
- polyphonic ªh¡╡¬║
- recessive ░fªµ¡½¡╡
- retroflex(ed) ▒▓ª▐¡╡¬║
- retroflexion ▒▓ª▐¡╡
- round Ñ╬╢Ω«B╡o┴n¬║
- rounded ╢Ω«B¬║
- semivowel ÑbÑ└¡╡
- short ╡u¡╡¬║
- sibilant ╛ª└┐¡╡
- sonance ª│┴n¡╡, ┼T¡╡, ┐B¡╡
- stop │¼┬Ω¡╡
- stress ¡½¡╡,¡½┼¬
- stress mark ¡½¡╡▓┼╕╣
- strong ▒j¡╡¬║,¡½┼¬¬║
- syllabic ¡╡╕`ÑD¡╡
- syllabic ║cª¿¡╡╕`¬║
- tense ª┘ª╫⌐╘║≥
- tone ºφ┤¡
- trigraph ñTªXªrÑ└
- trill ┼╕¡╡
- triphthong ñTªXÑ└¡╡
- ultima º└¡╡╕`
- unstressed ñú▒j╜╒
- unvoiced ╡L┴n¬║
- uvular ñf╗\½½¡╡
- velar │n├E¡╡
- vocal ª│┴n¡╡¬║; Ñ└¡╡¬║
- vocalize ¿╧..┐B¡╡ñ╞
- voice ª│┴n¡╡; ┐B¡╡
- voice ºΓñl¡╡ÑH┐B¡╡╡o¡╡
- voiced ª│┴n¬║, ┐B¡╡¬║
- voiceless ╡L┴n¬║
- vowel Ñ└¡╡, ñ╕¡╡
- whisper ª╒╗y
-
- [(╗y¿Ñ)]
- ablaut Ñ└¡╡ѵ┤½
- agglutination ╜ª╡█╗y¬k
- agglutinative ╜ª╡█¬k¬║
- agglutinative ╜ª╡█╗y
- allomorph ╡ⁿ»└┼▄┼Θ
- allophone ªPª∞¡╡
- articulation ╡o¡╡ñ└╕`
- blend ▓VªX╗y
- blending ▓VªX
- borrow ┬α¡╔
- bound form ¬■╡█╗yªí
- category ╜d│≥
- click ºl«≡¡╡
- clipping ▓ñ╝g
- cognate ªP╖╜╡ⁿ
- competence ╗y¿Ñ»αñO
- constituent ╡ⁿ▓╒│µª∞
- deep structure ▓`╝h╡▓║c
- deep ▓`╝h¬║
- derivative ¡lÑ═╗y
- doublet ªP╖╜▓ºº╬╡ⁿ
- echoic └└┴n¬║
- emphasis ▒j╜╒
- family ╗y▒┌
- free form ª█Ñ╤º╬ªí
- generation º╬ª¿,¡lÑ═
- generative ¡lÑ═¬║, Ñ═ª¿¬║
- generative grammar ¡lÑ═╗y¬k
- Grimm's law «µ¬L⌐w½▀
- group ╕s, ▓╒
- hybrid ▓VªX╗y
- hybridism ▓VªX╗y
- icon ╣╧╣│, ├■ªⁿ░O╕╣
- iconic ╣╧╣│ñW¬║
- idiolect ¡╙ñH╗y½¼
- immediate constituent ¬╜▒╡║cª¿¡n»└
- Indic ªL½╫╗y¿t
- inflectional ª│ªrº╬┼▄ñ╞¬║╗y¿Ñ
- informant ╕Ω«╞┤ú¿╤¬╠
- isogloss ªP¿Ñ╜u
- isolating language ⌐tÑ▀╗y¿Ñ
- juncture ¼█╛F¡╡╕`ñº│sªX
- kinesics ñH┼Θ░╩º@╛╟
- langue ¿Ñ
- lexicon ªr«w
- linguistic atlas ╗y¿Ññ└Ѽ╣╧
- marked ª│╝╨Ñ▄¬║
- marker ╝╨├╤
- meaningful ª│╖N╕q¬║
- mentalism ñ▀╞FÑD╕q
- metalanguage ñ╕╗y¿Ñ
- morpheme ╡ⁿ»└
- morphemics ╡ⁿº╬ª∞╛╟
- morphology ║c╡ⁿ╛╟
- mutate ╡oÑ═Ñ└¡╡┼▄ñ╞
- mutation Ñ└¡╡┼▄ñ╞
- node ╕`┬I
- organic ╗y╖╜¬║
- parent language Ñ└╗y
- parole ╣BÑ╬╗y¿Ñ
- performance ╗y¿Ñ╣BÑ╬
- phonetic ╗y¡╡┼▄╛E¬k½h
- phylum ╗y¿t
- portmanteau word ▓VªX╡ⁿ
- primitive ¡∞⌐l¬║
- radical ╗y«┌¬║
- referent ½ⁿ║┘,╗y╡ⁿ▓┼╕╣⌐╥½ⁿ╣∩╢H
- register ╗y¿Ñª∞¼█, ╗y░∞
- romance ⌐╘ñB╗y¿t
- root ╗y╖F
- semantics ╗y╕q╛╟
- semiotic ▓┼╕╣╜╫
- semiotics ▓┼╕╣╜╫
- shift ┴n¡╡¬║┼▄┤½
- shortening ┴Y╡u(¬k), ¼┘▓ñ(¬k)
- sound shift ╗y¡╡┼▄ñ╞
- speech community ╗y¿Ñ¬└╣╬
- stock ╗y¿t
- subfamily ¿╚¿t
- synchronic ª@«╔⌐╩¬║
- syncopate ññ▓ñ..¬║¡╡
- syncopation ññ▓ñ
- syncretism ┐─ªX
- syntax Ñyñl║c│y¬k
- tagmeme ╗y¬k│µª∞
- tone language ¡╡╜╒╗y¿Ñ
- tonic ¡╡╜╒¬║
- transform ¿╧..┼▄┤½,
- transformation ┼▄┤½, ┼▄º╬
- transformational grammar ¡lÑ═╗y¬k
- ultimate constituent ▓╫╖Ñ╡ⁿ▓╒
- umlaut Ñ└¡╡┼▄ñ╞
- utterance ╕▄╗y
- well-formed ªXñσ¬k¬║
-
- [(┼▐┐Φ)]
- a posteriori ┬k»╟
- a priori ║t├╢
- affirm ¬╓⌐w
- affirmation ¬╓⌐w
- affirmative ¬╓⌐w, ¬╓⌐w⌐R├D
- antecedent ½e┤ú
- antecedent ▒└╜╫
- antithesis ╢┬«µ║╕┼G├╥¬k¬║ñ╧⌐R├D
- categorical ┬_¿Ñ
- category ╜d├Ñ, ╜d│≥
- causal ¡∞ª]
- circle ┤`└⌠╜╫¬k
- circular ┤`└⌠⌐╩
- connotation ñ║▓[
- connotative ñ║▓[¬║
- connote ñ║▓[
- consequence ┬k╡▓
- contradiction ╡ⁿ¡▒Ñ┘¼▐
- correlative ¼█├÷ªW╡ⁿ
- deductive ║t├╢¬║
- deictic ¬╜├╥¬║
- denotation Ñ~⌐╡
- denotative Ñ~⌐╡¬║
- denote Ñ~⌐╡
- dichotomy ñGñ└¬k
- differentia »S▓º⌐╩
- extension Ñ~⌐╡
- extensional Ñ~⌐╡
- fallacy ┬╒╗~
- figure ñT¼q╜╫¬k¬║«µ
- formal º╬ªí¬║
- formally º╬ªíñW
- hypothetical ░▓⌐w
- icon ╣╧╣│
- iconic ╣╧╣│ñW¬║
- idol ┐∙╗~╗{¬╛, ┬╒╜╫
- individual ¡╙┼Θ
- induce ┬k»╟
- inductive ┬k»╟¬║
- intension ñ║▓[
- intensional ñ║▓[⌐╩¬║
- intensive ñ║▓[⌐╩¬║
- major premise ñT¼q╜╫¬k¬║ñj½e┤ú
- material ╣Ω╜ΦñW¬║
- materially ╣Ω╜ΦñW
- middle term ññªW├π
- minor ñpªW╡ⁿ; ñp½e┤ú
- minor premise ñT¼q╜╫¬k¬║ñp½e┤ú
- modal º╬ªíñW¬║
- modality ╝╥║A, ╝╦ªí
- mode ╜╫ªí, ╝╦ªí
- obvert ñ╧⌐R├D
- ostensive ⌐·Ñ▄⌐w╕q
- particular »S║┘, »S«φ
- particular »S║┘¬║; »S«φ⌐╩¬║
- postulate ñ╜▓z, ░≥Ñ╗¡∞▓z
- predicament ╜d├Ñ
- premiss ½e┤ú
- reductio ad absurdum ┬k┬╒¬k
- rider │Q║t├╢ñº¬½
- semiotic ▓┼╕╣╜╫¬║
- semiotics ▓┼╕╣╜╫
- subject ÑDª∞, ÑD├π
- syllogism ñT¼q╜╫¬k
- term ªW├π
- terminal ªW├π¬║
- thesis ª│½▌╜╫├╥¬║⌐R├D
- transform ┼▄┤½, ┼▄º╬
- transformation ┼▄┤½, ┼▄º╬
- trilemma ñT¡½┼Θ▒└┬_ªí
- universal Ñ■║┘¬║
- vicious circle ┤`└⌠╜╫¬k
-
- [(ª╥Ñj)]
- artifact ñHñu┐≥¬½, ñσñ╞┐≥¬½
- Bronze Age ½C╗╔╛╣«╔ÑN
- carbon dating ⌐±«g⌐╩║╥ª~ÑN┤·⌐w¬k
- dolmen «αº╬Ñ█
- Iron Age ┼K╛╣«╔ÑN
- kitchen midden ¿⌐╢∩
- megalith Ñ¿Ñ█
- midden (Ñv½eñH├■¬║)¿⌐╢∩
- Stone Age Ñ█╛╣«╔ÑN
- trilithon ñTÑ█╢≡
- turtleback └tÑ╥º╬Ñ█╛╣
-
- [(«≡╢H)]
- air mass «≡╣╬
- anticyclone ñ╧«≡▒█
- atmospheric pressure «≡└ú
- barogram «≡└ú░O┐²¬φ
- breeze ╖L¡╖
- calm ╡L¡╖
- Chinook ┤▄┐╒ºJ¡╖
- cirrocumulus ¿≈┐n╢│
- cirrostratus ¿≈╝h╢│
- cirrus ¿≈╢│
- cold front ºN╛W
- cold wave ┤H¼y
- corona (ªbñΘ, ñδ⌐P│≥¬║)Ñ·└⌠
- cumulonimbus ┐n½B╢│
- cumulostratus ┐n╝h╢│
- cumulus ┐n╢│
- cyclone «≡▒█
- depression ºC«≡└ú
- discontinuity ñú│s─≥╜u
- dry ░«⌐u
- electric ╣q╝╔, ╣p╝╔
- exosphere Ñ~«≡╝h
- eye ╗Σ¡╖▓┤
- fresh <¡╖> ▒j¬║
- fresh breeze ▓M¡╖(ñ¡»┼¡╖)
- fresh gale ▒j¡╖(ñK»┼¡╖)
- front ╛W¡▒
- frontal ½e╜u¬║
- gale ▒j¡╖
- gentle breeze ╖L¡╖
- halo Ñ·░Θ, ╖w╜ⁿ, Ñ·└⌠
- heat wave ╝÷«÷
- heliograph ñΘ╖╙¡p
- high ░¬«≡└ú(░Θ)
- hurricane ┴ⁿ¡╖
- isobar ╡Ñ└ú╜u
- isotherm ╡Ñ╖┼╜u
- jet stream ╝Q«g«≡¼y
- land breeze │░¡╖
- lapse rate «≡╖┼╗╝┤ε▓v
- light air │n¡╖
- light breeze ╗┤¡╖
- low ºC«≡└ú░╧
- meso- ññ«≡╝h
- millibar ▓@ñ┌
- moderate breeze ⌐M¡╖, Ñ|»┼¡╖
- moderate gale »e¡╖, ñC»┼¡╖
- nimbostratus ½B╝h╢│
- parhelion ñ█ñΘ
- precipitation ¡░½B, ñU│╖, ¡░½B╢q
- prevailing ▓▒ªµ¡╖
- radiosonde ╡L╜u╣q▒┤¬┼╗÷
- rainband ½B▒a
- sea breeze «ⁿ¡╖
- St. Elmo's fire [light] ⌐±╣qÑ·▓y
- storm ╝╔¡╖
- stratocumulus ╝h┐n╢│
- stratosphere ªP╖┼╝h
- stratus ╝h╢│
- strong breeze ▒j¡╖
- strong gale »P¡╖
- temperature gradient «≡╖┼▒Φ½╫
- troposphere ╣∩¼y╝h
- trough («≡└ú¬║) ╝╤
- turbulence (ñj«≡¬║)ñú├¡⌐w, ╢├¼y
- warm front ╖x╛W
- waterspout └s▒▓¡╖▒╚░_¬║ñ⌠¼W, ▒█╢│╡⌐
- wave («≡└ú╡Ѭ║) ¬i, ¬i«÷
- whole gale ¿g¡╖
- wind scale ¡╖»┼
- wind sock ¡╖│U
- windchill factor ¡╖┤Hª]»└
-
- [(ªa▓z)]
- catchment area ╢░ñ⌠░╧; ¼y░∞
- circle ╜n╜u; ░Θ
- continental drift ñj│░¬║║}▓╛(╗í)
- continental shelf ñj│░┤╫
- contour ╡Ñ░¬╜u
- fragmental ╕H«h╜Φ¬║; ┬_⌐Ѭ║
- latitude ╜n½╫
- line ¿¬╣D
- longitude ╕g½╫, ╕g╜u
- oceanic ¼vññ«q, ñj¼v«q
- scarp ░~⌐Y, ─a▒V
- tropic ª^┬k╜u
- zone ªa▒a
- porphyry ┤│⌐Ñ