home *** CD-ROM | disk | FTP | other *** search
Text File | 1991-01-31 | 51.3 KB | 1,461 lines |
- * Sample standard device library
- *
- * Copyright 1991 by MicroSim Corporation
- * This is a reduced version of MicroSim's standard parts libraries. Some
- * components from several types of component libraries have been included
- * here. You are welcome to make as many copies of it as you find convenient.
- *
- * The Microsim library included with the production version of PSpice
- * includes over 3,500 analog devices, and over 1,500 digital devices.
- *
- * Release date: January 1991
- *
- * It takes time for PSpice to scan a library file. To speed this up, PSpice
- * creates an index file, called <filename>.IND. The index file is re-created
- * whenever PSpice senses that the library file has changed.
-
- * The following is a summary of parts in this library:
- *
- * Part name Part type
- * --------- ---------
- * Q2N2222A NPN bipolar transistor
- * Q2N2907A PNP bipolar transistor
- * Q2N3904 NPN bipolar transistor
- * Q2N3906 PNP bipolar transistor
- *
- * D1N750 zener diode
- * MV2201 voltage variable capacitance diode
- * D1N4148 switching diode
- * MBD101 switching diode
- *
- * J2N3819 N-channel Junction field effect transistor
- * J2N4393 N-channel Junction field effect transistor
- *
- * LM324 linear operational amplifier
- * UA741 linear operational amplifier
- * LM111 voltage comparator
- *
- * K3019PL_3C8 ferroxcube pot magnetic core
- * KRM8PL_3C8 ferroxcube pot magnetic core
- * K502T300_3C8 ferroxcube pot magnetic core
- *
- * IRF150 N-type power MOS field effect transistor
- * IRF9140 P-type power MOS field effect transistor
- *
- * 7402 TTL digital 2-input NOR gate
- * 7404 TTL digital inverter
- * 7405 TTL digital inverter, open collector
- * 7414 TTL digital inverter, schmidt trigger
- * 7474 TTL digital D-type flip-flop
- * 74107 TTL digital JK-type flip-flop
- * 74393 TTL digital 4-bit binary counter
- *
- * A4N25 optocoupler
- *
- * 2N1595 silicon controlled rectifier
- * 2N5444 Triac
- *
- *-------------------------------------------------------------------------------
- * Library of bipolar transistor model parameters
- *
- * This is a reduced version of MicroSim's bipolar transistor model library.
- * You are welcome to make as many copies of it as you find convenient.
- *
- * The parameters in this model library were derived from the data sheets for
- * each part. Each part was characterize using the Parts option.
- * Devices can also be characterized without Parts as follows:
- *
- * NE, NC Normally set to 4
- * BF, ISE, IKF These are adjusted to give the nominal beta vs.
- * collector current curve. BF controls the mid-
- * range beta. ISE/IS controls the low-current
- * roll-off. IKF controls the high-current rolloff.
- * ISC Set to ISE.
- * IS, RB, RE, RC These are adjusted to give the nominal VBE vs.
- * IC and VCE vs. IC curves in saturation. IS
- * controls the low-current value of VBE. RB+RE
- * controls the rise of VBE with IC. RE+RC controls
- * the rise of VCE with IC. RC is normally set to 0.
- * VAF Using the voltages specified on the data sheet
- * VAF is set to give the nominal output impedance
- * (RO on the .OP printout) on the data sheet.
- * CJC, CJE Using the voltages specified on the data sheet
- * CJC and CJE are set to give the nominal input
- * and output capacitances (CPI and CMU on the .OP
- * printout; Cibo and Cobo on the data sheet).
- * TF Using the voltages and currents specified on the
- * data sheet for FT, TF is adjusted to produce the
- * nominal value of FT on the .OP printout.
- * TR Using the rise and fall time circuits on the
- * data sheet, TR (and if necessary TF) are adjusted
- * to give a transient analysis which shows the
- * nominal values of the turn-on delay, rise time,
- * storage time, and fall time.
- * KF, AF These parameters are only set if the data sheet has
- * a spec for noise. Then, AF is set to 1 and KF
- * is set to produce a total noise at the collector
- * which is greater than the generator noise at the
- * collector by the rated number of decibels.
- *
- *
- .model Q2N2222A NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307
- + Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
- + Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
- + Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
- * National pid=19 case=TO18
- * 88-09-07 bam creation
-
- .model Q2N2907A PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=231.7 Ne=1.829
- + Ise=54.81f Ikf=1.079 Xtb=1.5 Br=3.563 Nc=2 Isc=0 Ikr=0 Rc=.715
- + Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75
- + Tr=111.3n Tf=603.7p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
- * National pid=63 case=TO18
- * 88-09-09 bam creation
-
- .model Q2N3904 NPN(Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259
- + Ise=6.734f Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1
- + Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75
- + Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)
- * National pid=23 case=TO92
- * 88-09-08 bam creation
-
- .model Q2N3906 PNP(Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0
- + Ikf=80m Xtb=1.5 Br=4.977 Nc=2 Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p
- + Mjc=.5776 Vjc=.75 Fc=.5 Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n
- + Tf=179.3p Itf=.4 Vtf=4 Xtf=6 Rb=10)
- * National pid=66 case=TO92
- * 88-09-09 bam creation
-
- *-------------------------------------------------------------------------------
- * Library of diode model parameters
- *
- * Copyright 1991 by MicroSim Corporation
- * This is a reduced version of MicroSim's diode model library.
- * You are welcome to make as many copies of it as you find convenient.
- *
- * The parameters in this model library were derived from the data sheets for
- * each part. Most parts were characterize using the Parts option.
- * Devices can also be characterized without Parts as follows:
- * IS nominal leakage current
- * RS for zener diodes: nominal small-signal impedance
- * at specified operating current
- * IB for zener diodes: set to nominal leakage current
- * IBV for zener diodes: at specified operating current
- * IBV is adjusted to give the rated zener voltage
- *
- *
- *** Zener Diodes ***
- *
- * "A" suffix zeners have the same parameters (e.g., 1N750A has the same
- * parameters as 1N750)
- *
-
- .model D1N750 D(Is=880.5E-18 Rs=.25 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=175p M=.5516
- + Vj=.75 Fc=.5 Isr=1.859n Nr=2 Bv=4.7 Ibv=20.245m Nbv=1.6989
- + Ibvl=1.9556m Nbvl=14.976 Tbv1=-21.277u)
- * Motorola pid=1N750 case=DO-35
- * 89-9-18 gjg
- * Vz = 4.7 @ 20mA, Zz = 300 @ 1mA, Zz = 12.5 @ 5mA, Zz =2.6 @ 20mA
-
- *** Voltage-variable capacitance diodes
-
- * The parameters in this model library were derived from the data sheets for
- * each part. Each part was characterize using the Parts option.
- *
- .model MV2201 D(Is=1.365p Rs=1 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=14.93p M=.4261
- + Vj=.75 Fc=.5 Isr=16.02p Nr=2 Bv=25 Ibv=10u)
- * Motorola pid=MV2201 case=182-03
- * 88-09-22 bam creation
-
- *** Switching Diodes ***
-
- .model D1N4148 D(Is=0.1p Rs=16 CJO=2p Tt=12n Bv=100 Ibv=0.1p)
- * 85-??-?? Original library
-
- .model MBD101 D(Is=192.1p Rs=.1 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=893.8f M=98.29m
- + Vj=.75 Fc=.5 Isr=16.91n Nr=2 Bv=5 Ibv=10u)
- * Motorola pid=MBD101 case=182-03
- * 88-09-22 bam creation
-
- *-------------------------------------------------------------------------------
- * Library of junction field-effect transistor (JFET) model parameters
-
- * This is a reduced version of MicroSim's JFET model library.
- * You are welcome to make as many copies of it as you find convenient.
-
- * The parameters in this model library were derived from the data sheets for
- * each part. Each part was characterize using the Parts option.
-
- .model J2N3819 NJF(Beta=1.304m Betatce=-.5 Rd=1 Rs=1 Lambda=2.25m Vto=-3
- + Vtotc=-2.5m Is=33.57f Isr=322.4f N=1 Nr=2 Xti=3 Alpha=311.7
- + Vk=243.6 Cgd=1.6p M=.3622 Pb=1 Fc=.5 Cgs=2.414p Kf=9.882E-18
- + Af=1)
- * National pid=50 case=TO92
- * 88-08-01 rmn BVmin=25
-
- .model J2N4393 NJF(Beta=9.109m Betatce=-.5 Rd=1 Rs=1 Lambda=6m Vto=-1.422
- + Vtotc=-2.5m Is=205.2f Isr=1.988p N=1 Nr=2 Xti=3 Alpha=20.98u
- + Vk=123.7 Cgd=4.57p M=.4069 Pb=1 Fc=.5 Cgs=4.06p Kf=123E-18
- + Af=1)
- * National pid=51 case=TO18
- * 88-07-13 bam BVmin=40
-
- *-------------------------------------------------------------------------------
- * Library of linear IC definitions
-
- * This is a reduced version of MicroSim's linear subcircuit library.
- * You are welcome to make as many copies of it as you find convenient.
- *
- * The parameters in the opamp library were derived from the data sheets for
- * each part. The macromodel used is similar to the one described in:
- *
- * Macromodeling of Integrated Circuit Operational Amplifiers
- * by Graeme Boyle, Barry Cohn, Donald Pederson, and James Solomon
- * IEEE Journal of SoliE-State Circuits, Vol. SC-9, no. 6, Dec. 1974
- *
- * Differences from the reference (above) occur in the output limiting stage
- * which was modified to reduce internally generated currents associated with
- * output voltage limiting, as well as short-circuit current limiting.
- *
- * The opamps are modelled at room temperature and do not track changes with
- * temperature. This library file contains models for nominal, not worst case,
- * devices.
- *
- *-----------------------------------------------------------------------------
- * connections: non-inverting input
- * | inverting input
- * | | positive power supply
- * | | | negative power supply
- * | | | | output
- * | | | | |
- .subckt LM324 1 2 3 4 5
- *
- c1 11 12 2.887E-12
- c2 6 7 30.00E-12
- dc 5 53 dx
- de 54 5 dx
- dlp 90 91 dx
- dln 92 90 dx
- dp 4 3 dx
- egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
- fb 7 99 poly(5) vb vc ve vlp vln 0 21.22E6 -20E6 20E6 20E6 -20E6
- ga 6 0 11 12 188.5E-6
- gcm 0 6 10 99 59.61E-9
- iee 3 10 dc 15.09E-6
- hlim 90 0 vlim 1K
- q1 11 2 13 qx
- q2 12 1 14 qx
- r2 6 9 100.0E3
- rc1 4 11 5.305E3
- rc2 4 12 5.305E3
- re1 13 10 1.845E3
- re2 14 10 1.845E3
- ree 10 99 13.25E6
- ro1 8 5 50
- ro2 7 99 25
- rp 3 4 9.082E3
- vb 9 0 dc 0
- vc 3 53 dc 1.500
- ve 54 4 dc 0
- vlim 7 8 dc 0
- vlp 91 0 dc 40
- vln 0 92 dc 40
- .model dx D(Is=800.0E-18 Rs=1)
- .model qx PNP(Is=800.0E-18 Bf=166.7)
- .ends
- *-----------------------------------------------------------------------------
- * connections: non-inverting input
- * | inverting input
- * | | positive power supply
- * | | | negative power supply
- * | | | | output
- * | | | | |
- .subckt uA741 1 2 3 4 5
- *
- c1 11 12 8.661E-12
- c2 6 7 30.00E-12
- dc 5 53 dx
- de 54 5 dx
- dlp 90 91 dx
- dln 92 90 dx
- dp 4 3 dx
- egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
- fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -10E6 10E6 10E6 -10E6
- ga 6 0 11 12 188.5E-6
- gcm 0 6 10 99 5.961E-9
- iee 10 4 dc 15.16E-6
- hlim 90 0 vlim 1K
- q1 11 2 13 qx
- q2 12 1 14 qx
- r2 6 9 100.0E3
- rc1 3 11 5.305E3
- rc2 3 12 5.305E3
- re1 13 10 1.836E3
- re2 14 10 1.836E3
- ree 10 99 13.19E6
- ro1 8 5 50
- ro2 7 99 100
- rp 3 4 18.16E3
- vb 9 0 dc 0
- vc 3 53 dc 1
- ve 54 4 dc 1
- vlim 7 8 dc 0
- vlp 91 0 dc 40
- vln 0 92 dc 40
- .model dx D(Is=800.0E-18 Rs=1)
- .model qx NPN(Is=800.0E-18 Bf=93.75)
- .ends
- *-----------------------------------------------------------------------------
-
- *** Voltage comparators
-
- * The parameters in this comparator library were derived from data sheets for
- * each parts. The macromodel used was developed by MicroSim Corporation, and
- * is produced by the "Parts" option to PSpice.
- *
- * Although we do not use it, another comparator macro model is described in:
- *
- * An Integrated-Circuit Comparator Macromodel
- * by Ian Getreu, Andreas Hadiwidjaja, and Johan Brinch
- * IEEE Journal of Solid-State Circuits, Vol. SC-11, no. 6, Dec. 1976
- *
- * This reference covers the considerations that go into duplicating the
- * behavior of voltage comparators.
- *
- * The comparators are modelled at room temperature. The macro model does not
- * track changes with temperature. This library file contains models for
- * nominal, not worst case, devices.
- *
- *-----------------------------------------------------------------------------
- * connections: non-inverting input
- * | inverting input
- * | | positive power supply
- * | | | negative power supply
- * | | | | open collector output
- * | | | | | output ground
- * | | | | | |
- .subckt LM111 1 2 3 4 5 6
- *
- f1 9 3 v1 1
- iee 3 7 dc 100.0E-6
- vi1 21 1 dc .45
- vi2 22 2 dc .45
- q1 9 21 7 qin
- q2 8 22 7 qin
- q3 9 8 4 qmo
- q4 8 8 4 qmi
- .model qin PNP(Is=800.0E-18 Bf=833.3)
- .model qmi NPN(Is=800.0E-18 Bf=1002)
- .model qmo NPN(Is=800.0E-18 Bf=1000 Cjc=1E-15 Tr=118.8E-9)
- e1 10 6 9 4 1
- v1 10 11 dc 0
- q5 5 11 6 qoc
- .model qoc NPN(Is=800.0E-18 Bf=34.49E3 Cjc=1E-15 Tf=364.6E-12 Tr=79.34E-9)
- dp 4 3 dx
- rp 3 4 6.122E3
- .model dx D(Is=800.0E-18 Rs=1)
- *
- .ends
-
- *-------------------------------------------------------------------------------
- * Library of magnetic core model parameters
-
- * This is a reduced version of MicroSim's magnetic core library.
- * You are welcome to make as many copies of it as you find convenient.
-
- * The parameters in this model library were derived from the data sheets for
- * each core. The Jiles-Atherton magnetics model is described in:
- *
- * Theory of Ferromagnetic Hysteresis, by D C Jiles and D L Atherton,
- * Journal of Magnetism and Magnetic Materials, vol 61 (1986) pp 48-60
- *
- * Model parameters for ferrite material (Ferroxcube 3C8) were obtained by
- * trial simulations, using the B-H curves from the manufacturer's catalog.
- * Then, the library was compiled from the data sheets for each core geometry.
- * Notice that only the geometric values change once a material is
- * characterized.
-
- * Example use: K2 L2 .99 K1409PL_3C8
-
- * Notes:
- * 1) Using a K device (formerly only for mutual coupling) with a model
- * reference changes the meaning of the L device: the inductance value
- * becomes the number of turns for the winding.
- * 2) K devices can "get away" with specifying only one inductor, as in the
- * example above, to simulate power inductors.
-
- * Example circuit file:
-
- *+-----------------------------------------------------------------------------
- *|Demonstration of power inductor B-H curve
- *|
- *|* To view results with Probe (B-H curve):
- *|* 1) Add Trace for B(K1)
- *|* 2) set X-axis variable to H(K1)
- *|*
- *|* Probe x-axis unit is Oersted
- *|* Probe y-axis unit is Gauss
- *|*
- *|.tran .1 4
- *|igen0 0 1 sin(0 .1amp 1Hz 0) ; Generator: starts with 0.1 amp sinewave, then
- *|igen1 0 1 sin(0 .1amp 1Hz 1) ; +0.1 amps, starting at 1 second
- *|igen2 0 1 sin(0 .2amp 1Hz 2) ; +0.2 amps, starting at 2 seconds
- *|igen3 0 1 sin(0 .8amp 1Hz 3) ; +0.4 amps, starting at 3 seconds
- *|RL 1 0 1ohm ; generator source resistance
- *|L1 1 0 20 ; inductor with 20 turns
- *|K1 L1 .9999 K528T500_3C8 ; Ferroxcube torroid core
- *|.model K528T500_3C8 Core(MS=420E3 ALPHA=2E-5 A=26 K=18 C=1.05
- *|+ AREA=1.17 PATH=8.49)
- *|.options itl5=0
- *|.probe
- *|.end
- *+-----------------------------------------------------------------------------
-
- *** Ferroxcube pot cores: 3C8 material
-
- .model K3019PL_3C8 Core(Ms=420E3 Alpha=2E-5 A=26 K=18 C=1.05
- + Area=1.38 Path=4.52)
-
- *** Ferroxcube square cores: 3C8 material
-
- .model KRM8PL_3C8 Core(Ms=420E3 Alpha=2E-5 A=26 K=18 C=1.05
- + Area=.630 Path=3.84)
-
- *** Ferroxcube toroid cores: 3C8 material
-
- .model K502T300_3C8 Core(Ms=420E3 Alpha=2E-5 A=26 K=18 C=1.05
- + Area=.371 Path=7.32)
-
- *-------------------------------------------------------------------------------
- * Library of MOSFET model parameters (for "power" MOSFET devices)
- *
- * This is a reduced version of MicroSim's power MOSFET model library.
- * You are welcome to make as many copies of it as you find convenient.
- *
- * The parameters in this model library were derived from the data sheets for
- * each part. Each part was characterize using the Parts option.
- * Device can also be characterized without Parts as follows:
- * LEVEL Set to 3 (short-channel device).
- * TOX Determined from gate ratings.
- * L, LD, W, WD Assume L=2u. Calculate from input capacitance.
- * XJ, NSUB Assume usual technology.
- * IS, RD, RB Determined from "source-drain diode forward voltage"
- * specification or curve (Idr vs. Vsd).
- * RS Determine from Rds(on) specification.
- * RDS Calculated from Idss specification or curves.
- * VTO, UO, THETA Determined from "output characteristics" curve family
- * (Ids vs. Vds, stepped Vgs).
- * ETA, VMAX, CBS Set for null effect.
- * CBD, PB, MJ Determined from "capacitance vs. Vds" curves.
- * RG Calculate from rise/fall time specification or curves.
- * CGSO, CGDO Determined from gate-charge, turn-on/off delay and
- * rise time specifications.
- *
- * NOTE: when specifying the instance of a device in your circuit file:
- *
- * BE SURE to have the source and bulk nodes connected together, as this
- * is the way the real device is constructed.
- *
- * DO NOT include values for L, W, AD, AS, PD, PS, NRD, or NDS.
- * The PSpice default values for these parameters are taken into account
- * in the library model statements. Of course, you should NOT reset
- * the default values using the .OPTIONS statement, either.
- *
- * Example use: M17 15 23 7 7 IRF150
- *
- * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- *
- * The "power" MOSFET device models benefit from relatively complete specifi-
- * cation of static and dynamic characteristics by their manufacturers. The
- * following effects are modeled:
- * - DC transfer curves in forward operation,
- * - gate drive characteristics and switching delay,
- * - "on" resistance,
- * - reverse-mode "body-diode" operation.
- *
- * The factors not modeled include:
- * - maximum ratings (eg. high-voltage breakdown),
- * - safe operating area (eg. power dissipation),
- * - latch-up,
- * - noise.
- *
- * For high-current switching applications, we advise that you include
- * series inductance elements, for the source and drain, in your circuit file.
- * In doing so, voltage spikes due to di/dt will be modeled. According to the
- * 1985 International Rectifier databook, the following case styles have lead
- * inductance values of:
- * TO-204 (modified TO-3) source = 12.5nH drain = 5.0nH
- * TO-220 source = 7.5nH drain = 3.5-4.5nH
- * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- *
- .model IRF150 NMOS(Level=3 Gamma=0 Delta=0 Eta=0 Theta=0 Kappa=0 Vmax=0 Xj=0
- + Tox=100n Uo=600 Phi=.6 Rs=1.624m Kp=20.53u W=.3 L=2u Vto=2.831
- + Rd=1.031m Rds=444.4K Cbd=3.229n Pb=.8 Mj=.5 Fc=.5 Cgso=9.027n
- + Cgdo=1.679n Rg=13.89 Is=194E-18 N=1 Tt=288n)
- * Int'l Rectifier pid=IRFC150 case=TO3
- * 88-08-25 bam creation
-
- .model IRF9140 PMOS(Level=3 Gamma=0 Delta=0 Eta=0 Theta=0 Kappa=0 Vmax=0 Xj=0
- + Tox=100n Uo=300 Phi=.6 Rs=70.6m Kp=10.15u W=1.9 L=2u Vto=-3.67
- + Rd=60.66m Rds=444.4K Cbd=2.141n Pb=.8 Mj=.5 Fc=.5 Cgso=877.2p
- + Cgdo=369.3p Rg=.811 Is=52.23E-18 N=2 Tt=140n)
- * Int'l Rectifier pid=IRFC9140 case=TO3
- * 88-08-25 bam creation
-
- *-------------------------------------------------------------------------------
- * Library of digital logic
-
- * Copyright 1991 by MicroSim Corporation
- * This is a reduced version of MicroSim's Digital components library.
- * You are welcome to make as many copies of it as you find convenient.
- *
- * The parameters in this model library were derived from:
- *
- * The TTL Data Book, Texas Instruments, 1985
- * vol. 2
- *
- * Each device is modeled by a subcircuit. The interface pins of the
- * subcircuit have the same name as the pin labels in the data book. The
- * general order is inputs followed by outputs, but on the more complex
- * devices you will have to look at the subcircuit definition.
- * The word "BAR" is appended to inverted inputs or outputs.
- *
- * There are two optional power supply pins for each digital subcircuit.
- * You do not need to specify these if you are using a 5v supply with
- * analog and digital ground connected. If you use another power supply
- * configuration, then the pins should be connected to that supply.
- *
- * The timing charactistics from the data book are included in the models,
- * with all data sheet effects modeled, unless noted in this file.
- *
- * If a device contains multiple, independant, identical functions, only
- * one is contained in the subcircuit. (e.g. the 7400 contains four two-
- * input NAND gates, but there is only one in the 7400 subckt.)
- *
- * The subcircuit name is the part name. Only the 74 series (not the 54
- * series) is included in the library, except for a few parts which
- * are only made in the 54 series. (e.g. 54L00)
- *--------------------------------------------------------------------
- * 7402 Quadruple 2-input Positive-Nor Gates
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/23/89 Update interface and model names
-
- .subckt 7402 A B Y
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- U1 nor(2) DPWR DGND
- + A B Y
- + D_02 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_02 ugate (
- + tplhty=12ns tplhmx=22ns
- + tphlty=8ns tphlmx=15ns
- + )
- *-------------------------------------------------------------------------
- * 7404 Hex Inverters
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/23/89 Update interface and model names
-
- .subckt 7404 A Y
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- U1 inv DPWR DGND
- + A Y
- + D_04 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_04 ugate (
- + tplhty=12ns tplhmx=22ns
- + tphlty=8ns tphlmx=15ns
- + )
- *-------------------------------------------------------------------------
- * 7405 Hex Inverters with Open-Collector Outputs
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/23/89 Update interface and model names
-
- .subckt 7405 A Y
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- U1 inv DPWR DGND
- + A Y
- + D_05 IO_STD_OC MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_05 ugate (
- + tplhty=40ns tplhmx=55ns
- + tphlty=8ns tphlmx=15ns
- + )
- *-------------------------------------------------------------------------
- * 7414 Hex Schmitt-Trigger Inverters
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/23/89 Update interface and model names
-
- .subckt 7414 A Y
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- * Note: These devices are modeled as simple inverters
- * Hysteresis is modeled in the AtoD interface
-
- U1 inv DPWR DGND
- + A Y
- + D_14 IO_STD_ST MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_14 ugate (
- + tplhty=15ns tplhmx=22ns
- + tphlty=15ns tphlmx=22ns
- + )
- *-------------------------------------------------------------------------
- * 7474 Dual D-Type Positive-Edge-Triggered Flip-Flops with Preset and Clear
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/28/89 Update interface and model names
-
- .subckt 7474 1CLRBAR 1D 1CLK 1PREBAR 1Q 1QBAR
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- UFF1 dff(1) DPWR DGND
- + 1PREBAR 1CLRBAR 1CLK 1D 1Q 1QBAR
- + D_74 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_74 ueff (
- + twpclmn=30ns twclklmn=37ns
- + twclkhmn=30ns tsudclkmn=20ns
- + thdclkmn=5ns tppcqlhmx=25ns
- + tppcqhlmx=40ns tpclkqlhty=14ns
- + tpclkqlhmx=25ns tpclkqhlty=20ns
- + tpclkqhlmx=40ns
- + )
- *-------------------------------------------------------------------------
- * 74107 Dual J-K Flip-Flops with Clear
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * tdn 06/29/89 Update interface and model names
-
- .subckt 74107 CLK CLRBAR J K Q QBAR
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- UIBUF bufa(3) DPWR DGND
- + CLRBAR J K CLRBAR_BUF J_BUF K_BUF
- + D0_GATE IO_STD IO_LEVEL={IO_LEVEL}
- U2BUF buf DPWR DGND
- + CLK CLK_BUF
- + D_107_4 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- U1 srff(1) DPWR DGND
- + $D_HI CLRBAR_BUF CLK_BUF W1 W2 Y YB
- + D_107_1 IO_STD MNTYMXDLY={MNTYMXDLY}
- U2 srff(1) DPWR DGND
- + $D_HI CLRBAR_BUF CLKBAR Y YB QBUF QBAR_BUF
- + D_107_2 IO_STD MNTYMXDLY={MNTYMXDLY}
- U3 inva(3) DPWR DGND
- + CLK_BUF J_BUF K_BUF CLKBAR JB KB
- + D0_GATE IO_STD
- U4 ao(3,2) DPWR DGND
- + J_BUF K_BUF QBAR_BUFD J_BUF KB $D_HI W1
- + D_107_3 IO_STD MNTYMXDLY={MNTYMXDLY}
- U5 ao(3,2) DPWR DGND
- + J_BUF K_BUF QBUFD JB K_BUF $D_HI W2
- + D_107_3 IO_STD MNTYMXDLY={MNTYMXDLY}
- UBUF bufa(4) DPWR DGND
- + QBUF QBAR_BUF QBUF QBAR_BUF Q QBAR QBUFD QBAR_BUFD
- + D_107_3 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_107_1 ugff (
- + twghmx=19ns twghty=19ns
- + twpclmx=47ns twpclty=47ns
- + )
- .model D_107_2 ugff (
- + tppcqlhty=10ns tppcqlhmx=19ns
- + tppcqhlty=19ns tppcqhlmx=34ns
- + tpgqlhty=10ns tpgqlhmx=19ns
- + tpgqhlty=19ns tpgqhlmx=34ns
- + twghmx=20ns twghty=20ns
- + twpclmx=47ns twpclty=47ns
- + )
- .model D_107_3 ugate (
- + tplhty=6ns tplhmx=6ns
- + tphlty=6ns tphlmx=6ns
- + )
- .model D_107_4 ugate (
- + tplhmn=6ns tplhmx=6ns
- + )
- *-------------------------------------------------------------------------
- * 74393 Dual 4-bit Binary Counter with Individual Clocks
- *
- * The TTL Data Book, Vol 2, 1985, TI
- * atl 7/18/89 Update interface and model names
-
- .subckt 74393 A CLR QA QB QC QD
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: MNTYMXDLY=0 IO_LEVEL=0
- UINV inv DPWR DGND
- + CLR CLRBAR
- + D0_GATE IO_STD IO_LEVEL={IO_LEVEL}
- U1 jkff(1) DPWR DGND
- + $D_HI CLRBAR A $D_HI $D_HI QA_BUF $D_NC
- + D_393_1 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- U2 jkff(1) DPWR DGND
- + $D_HI CLRBAR QA_BUF $D_HI $D_HI QB_BUF $D_NC
- + D_393_2 IO_STD MNTYMXDLY={MNTYMXDLY}
- U3 jkff(1) DPWR DGND
- + $D_HI CLRBAR QB_BUF $D_HI $D_HI QC_BUF $D_NC
- + D_393_2 IO_STD MNTYMXDLY={MNTYMXDLY}
- U4 jkff(1) DPWR DGND
- + $D_HI CLRBAR QC_BUF $D_HI $D_HI QD_BUF $D_NC
- + D_393_3 IO_STD MNTYMXDLY={MNTYMXDLY}
- UBUFF bufa(4) DPWR DGND
- + QA_BUF QB_BUF QC_BUF QD_BUF QA QB QC QD
- + D_393_4 IO_STD MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
- .ends
-
- .model D_393_1 ueff (
- + tppcqhlty=18ns tppcqhlmx=33ns
- + tpclkqlhty=6ns tpclkqlhmx=14ns
- + tpclkqhlty=7ns tpclkqhlmx=14ns
- + twclkhmn=20ns twclklmn=20ns
- + twpclmn=20ns tsudclkmn=25ns
- + )
- .model D_393_2 ueff ()
- .model D_393_3 ueff (
- + tpclkqlhty=27ns tpclkqlhmx=40ns
- + tpclkqhlty=27ns tpclkqhlmx=40ns
- + )
- .model D_393_4 ugate (
- + tphlty=6ns tphlmx=6ns
- + tplhty=6ns tplhmx=6ns
- + )
- *
- * AtoD and DtoA Subcircuits
- * -------------------------
- * The subcircuits in this library are used to convert analog signals
- * into digital signals (AtoD) and digital signals into analog signals
- * (DtoA). The PSpice Digital Simulation Option creates "X" devices which
- * reference these subcircuits whenever it needs to convert a digital or
- * analog signal. The user usually will not need to use these subcircuits
- * directly. However, if you need to add new AtoD or DtoA subcircuits, the
- * interface nodes must be in the following order, and have the following
- * parameters:
- *
- * AtoD: .subckt <name> <analog-node> <dig-node> <dig-pwr> <dig-gnd>
- * + params: CAPACITANCE=0
- *
- * DtoA: .subckt <name> <dig-node> <analog-node> <dig-pwr> <dig-gnd>
- * + params: DRVL=0 DRVH=0 CAPACITANCE=0
- *
- * I/O Models
- * ----------
- * I/O models specify the names of the AtoD and DtoA subcircuits PSpice must
- * use to convert analog signals to digital signals or vice versa. (I/O models
- * also describe driving and loading characteristics.) Up to four of each
- * AtoD and DtoA subcircuit names may be specified in an I/O model, using
- * parameters AtoD1 through AtoD4, and DtoA1 through DtoA4. The subcircuit
- * which PSpice actually uses depends on the value of the IO_LEVEL parameter
- * in a subcircuit reference.
- *
- * As implemented in this library, the levels have the following definitions:
- *
- * IO_LEVEL Definition
- * -------- --------------------------------------------------------------
- * 1 Basic (simple) model with X, R, and F between VIL max and VIH min (AtoD)
- * 2 Basic (simple) model without intermediate X value
- * 3 Elaborate model with X between VIL max and VIH min (AtoD)
- * 4 Elaborate model without intermediate X, R, and F value
- *
- * The Elaborate model has a more accurate I-V curve, including clamping
- * diodes, but since it has more devices, it can take longer to simulate
- * when it is used.
- *
- * For example, to specify the basic interface without an intermediate
- * X value, you would use:
- *
- * X1 in out 74LS04 PARAMS: IO_LEVEL=2
- *
- * If the IO_LEVEL is not specified for a device, the default IO_LEVEL is used.
- * The default level is controled by the .OPTION parameter DIGIOLVL, which
- * defaults to 1.
- *
-
- *-----------------------------------------------------------------------------
- * Digital Power Supply
- *-----------------------------------------------------------------------------
-
- * PSpice automatically creates one instance of this subcircuit if any
- * AtoD or DtoA interfaces are created. PSpice always uses node 0 as the
- * required analog reference node "GND". The digital power and ground
- * nodes default to global nodes named $G_DPWR and $G_DGND, which are
- * used throughout the digital libraries. The default output is 5.0v.
- *
- * To create your own power supply, simply create an instance of this
- * subcircuit, using your own digital power and ground node names, and
- * the desired voltage. For example:
- *
- * XMYPOWER 0 MY_PWR MY_GND DIGIFPWR params: VOLTAGE=3.5V
- *
-
- .subckt DIGIFPWR AGND
- + optional: DPWR=$G_DPWR DGND=$G_DGND
- + params: VOLTAGE=5.0v REFERENCE=0v
- *
- VDPWR DPWR DGND {VOLTAGE}
- R1 DPWR AGND 1MEG
- VDGND DGND REF {REFERENCE}
- R2 REF AGND 1E-6
- R3 DGND AGND 1MEG
- .ends
-
-
- *-----------------------------------------------------------------------------
- * Stimulus Device Models and Subcircuits
- *-----------------------------------------------------------------------------
-
- *-------------------------------------------------
- * Stimulus I/O Models
-
- .model IO_STM uio (
- + drvh=0 drvl=0
- + DtoA1="DtoA_STM" DtoA2="DtoA_STM"
- + DtoA3="DtoA_STM" DtoA4="DtoA_STM"
- + )
- .model IO_STM_OC uio (
- + drvh=1MEG drvl=0
- + DtoA1="DtoA_STM_OC" DtoA2="DtoA_STM_OC"
- + DtoA3="DtoA_STM_OC" DtoA4="DtoA_STM_OC"
- + )
-
- *-------------------------------------------------
- * Stimulus DtoA Subcircuit
-
- .subckt DtoA_STM D A DPWR DGND
- + params: DRVL=0 DRVH=0 CAPACITANCE=0
- *
- N1 A DGND DPWR DINSTM DGTLNET=D IO_STM
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- *-------------------------------------------------
- * Stimulus Open Collector DtoA Subcircuit
-
- .subckt DtoA_STM_OC D A DPWR DGND
- + params: DRVL=0 DRVH=0 CAPACITANCE=0
- *
- N1 A DGND DPWR DINSTM_OC DGTLNET=D IO_STM_OC
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- *-------------------------------------------------
- * Stimulus Digital Input/Output Models
- *
- * We use 1/2 ohm and a 500ps transition time, on the assumption that
- * this will be a "strong" signal source with a "fast" switching time
- * in most systems which use this library. Change the tsw's and/or the
- * rlow and rhi values if these don't work for your system.
- *
- .model DINSTM dinput (
- + s0name="0" s0tsw=0.5ns s0rlo=.5 s0rhi=1k
- + s1name="1" s1tsw=0.5ns s1rlo=1k s1rhi=.5
- + s2name="X" s2tsw=0.5ns s2rlo=0.429 s2rhi=1.16 ; .313ohm, 1.35v
- + s3name="R" s3tsw=0.5ns s3rlo=0.429 s3rhi=1.16 ; .313ohm, 1.35v
- + s4name="F" s4tsw=0.5ns s4rlo=0.429 s4rhi=1.16 ; .313ohm, 1.35v
- + s5name="Z" s5tsw=0.5ns s5rlo=1MEG s5rhi=1MEG
- + )
- .model DINSTM_OC dinput (
- + s0name="0" s0tsw=0.5ns s0rlo=.5 s0rhi=1k
- + s1name="1" s1tsw=0.5ns s1rlo=1MEG s1rhi=1MEG
- + s2name="X" s2tsw=0.5ns s2rlo=0.429 s2rhi=1.16 ; .313ohm, 1.35v
- + s3name="R" s3tsw=0.5ns s3rlo=0.429 s3rhi=1.16 ; .313ohm, 1.35v
- + s4name="F" s4tsw=0.5ns s4rlo=0.429 s4rhi=1.16 ; .313ohm, 1.35v
- + s5name="Z" s5tsw=0.5ns s5rlo=1MEG s5rhi=1MEG
- + )
-
-
- *-----------------------------------------------------------------------------
- * Zero-Delay Models
- *-----------------------------------------------------------------------------
-
- *-------------------------------------------------
- * Zero-Delay Gate Model
-
- .model D0_GATE ugate ()
-
- *-------------------------------------------------
- * Zero-Delay Tristate Gate Model
-
- .model D0_TGATE utgate ()
-
- *-------------------------------------------------
- * Zero-Delay Edge-Triggered Flip-Flop Model
-
- .model D0_EFF ueff ()
-
- *-------------------------------------------------
- * Zero-Delay Gated Flip-Flop Model
-
- .model D0_GFF ugff ()
-
-
- ******************************************************************************
- * 74/54 Family (standard TTL)
- ******************************************************************************
-
- *-------------------------------------------------
- * 7400 I/O Models
-
- .model IO_STD uio (
- + drvh=96.4 drvl=104
- + AtoD1="AtoD_STD" AtoD2="AtoD_STD_NX"
- + AtoD3="AtoD_STD_E" AtoD4="AtoD_STD_NXE"
- + DtoA1="DtoA_STD" DtoA2="DtoA_STD"
- + DtoA3="DtoA_STD" DtoA4="DtoA_STD"
- + )
- .model IO_STD_ST uio (
- + drvh=96.4 drvl=104
- + AtoD1="AtoD_STD_ST" AtoD2="AtoD_STD_ST"
- + AtoD3="AtoD_STD_ST_E" AtoD4="AtoD_STD_ST_E"
- + DtoA1="DtoA_STD" DtoA2="DtoA_STD"
- + DtoA3="DtoA_STD" DtoA4="DtoA_STD"
- + )
- .model IO_STD_OC uio (
- + drvh=1MEG drvl=104
- + AtoD1="AtoD_STD" AtoD2="AtoD_STD_NX"
- + AtoD3="AtoD_STD_E" AtoD4="AtoD_STD_NXE"
- + DtoA1="DtoA_STD_OC" DtoA2="DtoA_STD_OC"
- + DtoA3="DtoA_STD_OC" DtoA4="DtoA_STD_OC"
- + )
-
- *-------------------------------------------------
- * 7400 Standard AtoD Subcircuits
-
- * Simple Models:
-
- .subckt AtoD_STD A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74 DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- .subckt AtoD_STD_NX A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74_NX DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- * Elaborate Models:
-
- .subckt AtoD_STD_E A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74 DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- D0 DGND a D74CLMP
- D1 1 2 D74
- D2 2 DGND D74
- R1 DPWR 3 4k
- Q1 1 3 A 0 Q74 ; substrait should be DGND
- .ends
-
- .subckt AtoD_STD_NXE A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74_NX DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- D0 DGND a D74CLMP
- D1 1 2 D74
- D2 2 DGND D74
- R1 DPWR 3 4k
- Q1 1 3 A 0 Q74 ; substrait should be DGND
- .ends
-
- *-------------------------------------------------
- * 7400 Schmidt trigger AtoD Subcircuits
-
- * Simple Model:
-
- .subckt AtoD_STD_ST A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74_ST DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- * Elaborate Model:
-
- .subckt AtoD_STD_ST_E A D DPWR DGND
- + params: CAPACITANCE=0
- *
- O0 A DGND DO74_ST DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- D0 DGND a D74CLMP
- D1 1 2 D74
- D2 2 DGND D74
- R1 DPWR 3 4k
- Q1 1 3 A 0 Q74
- .ends
-
- *-------------------------------------------------
- * 7400 standard DtoA Subcircuit
-
- .subckt DtoA_STD D A DPWR DGND
- + params: DRVL=0 DRVH=0 CAPACITANCE=0
- *
- N1 A DGND DPWR DIN74 DGTLNET=D IO_STD
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- *-------------------------------------------------
- * 7400 open collector DtoA Subcircuit
-
- .subckt DtoA_STD_OC D A DPWR DGND
- + params: DRVL=0 DRVH=0 CAPACITANCE=0
- *
- N1 A DGND DPWR DIN74_OC DGTLNET=D IO_STD_OC
- C1 A 0 {CAPACITANCE+0.1pF}
- .ends
-
- *-------------------------------------------------
- * 7400 Digital Input/Output Models
-
- .model DIN74 dinput (
- + s0name="0" s0tsw=3.5ns s0rlo=7.13 s0rhi=389 ; 7ohm, 0.09v
- + s1name="1" s1tsw=5.5ns s1rlo=467 s1rhi=200 ; 140ohm, 3.5v
- + s2name="X" s2tsw=3.5ns s2rlo=42.9 s2rhi=116 ; 31.3ohm, 1.35v
- + s3name="R" s3tsw=3.5ns s3rlo=42.9 s3rhi=116 ; 31.3ohm, 1.35v
- + s4name="F" s4tsw=3.5ns s4rlo=42.9 s4rhi=116 ; 31.3ohm, 1.35v
- + s5name="Z" s5tsw=3.5ns s5rlo=200K s5rhi=200K
- + )
- .model DIN74_OC dinput (
- + s0name="0" s0tsw=3.5ns s0rlo=7.13 s0rhi=389 ; 7ohm, 0.09v
- + s1name="1" s1tsw=5.5ns s1rlo=200K s1rhi=200K
- + s2name="X" s2tsw=3.5ns s2rlo=42.9 s2rhi=116 ; 31.3ohm, 1.35v
- + s3name="R" s3tsw=3.5ns s3rlo=42.9 s3rhi=116 ; 31.3ohm, 1.35v
- + s4name="F" s4tsw=3.5ns s4rlo=42.9 s4rhi=116 ; 31.3ohm, 1.35v
- + s5name="Z" s5tsw=5.5ns s5rlo=200K s5rhi=200K
- + )
- .model DO74 doutput (
- + s0name="X" s0vlo=0.8 s0vhi=2.0
- + s1name="0" s1vlo=-1.5 s1vhi=0.8
- + s2name="R" s2vlo=0.8 s2vhi=1.4
- + s3name="R" s3vlo=1.3 s3vhi=2.0
- + s4name="X" s4vlo=0.8 s4vhi=2.0
- + s5name="1" s5vlo=2.0 s5vhi=7.0
- + s6name="F" s6vlo=1.3 s6vhi=2.0
- + s7name="F" s7vlo=0.8 s7vhi=1.4
- + )
- .model DO74_NX doutput (
- + s0name="0" s0vlo=-1.5 s0vhi=1.35
- + s2name="1" s2vlo=1.35 s2vhi=7.0
- + )
- .model DO74_ST doutput (
- + s0name="0" s0vlo=-1.5 s0vhi=1.7
- + s1name="1" s1vlo=0.9 s1vhi=7.0
- + )
-
- .model D74 d (
- + is=1e-16 rs=25 cjo=2pf
- + )
- .model D74CLMP d (
- + is=1e-15 rs=2 cjo=2pf
- + )
- .model Q74 npn (
- + ise=1e-16 isc=4e-16
- + bf=49 br=.03
- + cje=1pf cjc=.5pf
- + cjs=3pf vje=0.9v
- + vjc=0.8v vjs=0.7v
- + mje=0.5 mjc=0.33
- + mjs=0.33 tf=0.2ns
- + tr=10ns rb=50
- + rc=20
- + )
-
- *-------------------------------------------------------------------------------
- * Library of optocoupler models
-
- * Copyright 1991 by MicroSim Corporation
- * This is a reduced version of MicroSim's Opto-coupler components library.
- * You are welcome to make as many copies of it as you find convenient.
-
- * The parameters in this model library were derived from the data sheets for
- * each part.
-
- *.model 4N25
- * 6-pin DIP: pin #1 #2 #4 #5 #6
- * | | | | |
- .subckt A4N25 pin1 pin2 pin4 pin5 pin6 params: rel_CTR=1
- * Motorola pid=4N25
- * 88-01-04 pwt
- * 88-01-18 pwt rework Cje approximation
-
- * The data sheet used for this model is from Motorola: it was the most
- * complete for DC and switching parameters, and is was easy to find the
- * component IR-LED and phototransistor as separate devices for further
- * specifications.
-
- d_MainLED pin1 pin2 MainLED
- d_PhotoLED pin1 1 PhotoLED .001
- v_PhotoLED 1 pin2 0
-
- f_TempComp 0 2 v_PhotoLED 1
- r_TempComp 2 0 TempComp {rel_CTR}
-
- g_BaseSrc 5 6 2 0 .9
- q_PhotoBJT 5 6 4 PhotoBJT
- r_C 5 pin5 .1
- r_B 6 pin6 .1
- r_E 4 pin4 .1
-
- * Since active devices dominate pin-to-pin capacitance on each "side" of the
- * optocoupler, isolation is modeled by identical capacitances and resistances
- * linked to a common point; this gives isolation of .5pF and 1E+11 ohms
- c_1 pin1 7 .4p
- r_1 pin1 7 .12T
- c_2 pin2 7 .4p
- r_2 pin2 7 .12T
- c_4 pin4 7 .4p
- r_4 pin4 7 .12T
- c_5 pin5 7 .4p
- r_5 pin5 7 .12T
- c_6 pin6 7 .4p
- r_6 pin6 7 .12T
-
- * Similar to Motorola MLED15.
- .model MainLED D(Is=1.1p Rs=.66 Ikf=30m N=1.9 Xti=3 Cjo=40p M=.34 Vj=.75
- + Isr=30n Nr=3.8 Bv=6 Ibv=100u Tt=.5u)
-
- * Models photon generation: same as MainLED except no AC effects, no breakdown.
- .model PhotoLED D(Is=1.1p Rs=.66 Ikf=30m N=1.9 Xti=3 Cjo=0 M=.34 Vj=.75
- + Isr=30n Nr=3.8 Bv=0 Tt=0)
-
- * Temperature compensation for system: 1.38x @ -55'C, .54x @ +100'C, all @ 10mA
- * Note: the photo BJT has its own temperature corrections, which must be kept
- * as the transistor is electrically available.
- .model TempComp RES(R=1 Tc1=-11.27m Tc2=43.46u)
-
- * Similar to Motorola MDR3050; Hfe=325 @ Ic=500uA, Vce=5V
- * Use beta variation (w/Parts) to model change in current-transfer ratio (CTR).
- * Hand adjust reverse beta (Br) to match saturation characteristics.
- * Set Isc to model dark current.
- * Hand adjust Cjc to match fall time @ Ic=10mA (which yields rise time, too).
- * Hand adjust reverse transit-time (Tr) to match storage time @ Ic=10mA.
- * Delay time set by LED I-V and C-V characteristics; set Cje to 25% of Cjc,
- * inspection of phototransistor chip layouts show the emitter area is 20%-25%
- * that of the collector area. The same layouts show that base resistance is
- * made negligible by design; also, the operating currents are small.
- * Hand adjust forward transit-time (Tf) to match MDR3050 pulse data. Check
- * against 4N25 frequency response (Fig 11, 12).
- .model PhotoBJT NPN(Is=10f Xti=3 Vaf=60
- + Bf=400 Ne=3.75 Ise=580p Ikf=.26 Xtb=1.5
- + Br=.04 Nc=2 Isc=3.5n
- + Cjc=10p Mjc=.3333 Vjc=.75 Tr=88u
- + Cje=2.5p Mje=.3333 Vje=.75 Tf=1.5n)
- .ends
-
- *.model 4N25A
- * 6-pin DIP: pin #1 #2 #4 #5 #6
- * | | | | |
- .subckt A4N25A pin1 pin2 pin4 pin5 pin6
- * 88-01-05 pwt
- * Same as 4N25 (UL recognized).
- x1 pin1 pin2 pin4 pin5 pin6 A4N25
- .ends
-
- *-------------------------------------------------------------------------------
- * Library of Thyristor (SCR and Triac) models
-
- * Copyright 1991 by MicroSim Corporation
- * This is a reduced version of MicroSim's Thyristor components library.
- * You are welcome to make as many copies of it as you find convenient.
-
- * Library of SCR models
-
- * NOTE: This library requires the "Analog Behavioral Modeling"
- * option available with PSpice. A model developed without
- * Behavioral Modeling was found to be very slow and not
- * very robust.
-
- * This macromodel uses a controlled switch as the basic SCR
- * structure. In all cases, the designer should use
- * the manufacturer's data book for actual part selection.
-
- * The required parameters were derived from data sheet (Motorola)
- * information on each part. When available, only "typical"
- * parameters are used (except for Idrm which is always
- * a "max" value). If a "typical" parameter is not available,
- * a "min" or "max" value may be used in which case a comment is
- * made in the library.
-
- * The SCRs are modeled at room temperature and do not track
- * changes with temperature. Note that Vdrm is specified by the
- * manufacturer as valid over a temperature range. Also, in
- * nearly all cases, dVdt and Toff are specified by the
- * manufacturer at approximately 100 degrees C. This results in a
- * model which is somewhat "conservative" for a room temperature
- * model.
-
- * The parameter dVdt (when available from the date sheet) is used
- * to model the Critical Rate of Rise of Off-State Voltage. If
- * not specified, dVdt is defaulted to 1000 V/microsecond.
- * A side effect of this model is that the turn-on current, Ion,
- * is determined by Vtm/(Ih*Vdrm). Vtm is also used as the
- * holding voltage.
-
- .SUBCKT Scr anode gate cathode PARAMS:
- + Vdrm=400v Vrrm=400v Idrm=10u
- + Ih=6ma dVdt=5e7
- + Igt=5ma Vgt=0.7v
- + Vtm=1.7v Itm=24
- + Ton=1u Toff=15u
-
- * Where:
- * Vdrm => Forward breakover voltage
- * Vrrm => Reverse breakdown voltage
- * Idrm => Peak blocking current
- * Ih => Holding current
- * dVdt => Critical value for dV/dt triggering
- * Igt => Gate trigger current
- * Vgt => Gate trigger voltage
- * Vtm => On-state voltage
- * Itm => On-state current
- * Ton => Turn-on time
- * Toff => Turn-off time
-
- * Main conduction path
- Scr anode anode0 control 0 Vswitch ; controlled switch
- Dak1 anode0 anode2 Dakfwd OFF ; SCR is initially off
- Dka cathode anode0 Dkarev OFF
- VIak anode2 cathode ; current sensor
-
- * dVdt Turn-on
- Emon dvdt0 0 TABLE {v(anode,cathode)} (0 0) (2000 2000)
- CdVdt dvdt0 dvdt1 100pfd ; displacement current
- Rdlay dvdt1 dvdt2 1k
- VdVdt dvdt2 cathode DC 0.0
- EdVdt condvdt 0 TABLE {i(vdVdt)-100p*dVdt} (0 0 ) (.1m 10)
- RdVdt condvdt 0 1meg
-
- * Gate
- Rseries gate gate1 {(Vgt-0.65)/Igt}
- Rshunt gate1 gate2 {0.65/Igt}
- Dgkf gate1 gate2 Dgk
- VIgf gate2 cathode ; current sensor
-
- * Gate Turn-on
- Egate1 gate4 0 TABLE {i(Vigf)-0.95*Igt} (0 0) (1m 10)
- Rgate1 gate4 0 1meg
- Egon1 congate 0 TABLE {v(gate4)*v(anode,cathode)} (0 0) (10 10)
- Rgon1 congate 0 1meg
-
- * Main Turn-on
- EItot Itot 0 TABLE {i(VIak)+5E-5*i(VIgf)/Igt} (0 0) (2000 2000)
- RItot Itot 0 1meg
- Eprod prod 0 TABLE {v(anode,cathode)*v(Itot)} (0 0) (1 1)
- Rprod prod 0 1meg
- Elin conmain 0 TABLE
- + {10*(v(prod) - (Vtm*Ih))/(Vtm*Ih)} (0 0) (2 10)
- Rlin conmain 0 1meg
-
- * Turn-on/Turn-off control
- Eonoff contot 0 TABLE
- + {v(congate)+v(conmain)+v(condvdt)} (0 0) (10 10)
-
- * Turn-on/Turn-off delays
- Rton contot dlay1 825
- Dton dlay1 control Delay
- Rtoff contot dlay2 {290*Toff/Ton}
- Dtoff control dlay2 Delay
- Cton control 0 {Ton/454}
-
- * Reverse breakdown
- Dbreak anode break1 Dbreak
- Dbreak2 cathode break1 Dseries
-
- * Controlled switch model
- .MODEL Vswitch vswitch
- + (Ron = {(Vtm-0.7)/Itm}, Roff = {Vdrm*Vdrm/(Vtm*Ih)},
- + Von = 5.0, Voff = 1.5)
-
- * Diodes
- .MODEL Dgk D (Is=1E-16 Cjo=50pf Rs=5)
- .MODEL Dseries D (Is=1E-14)
- .MODEL Delay D (Is=1E-12 Cjo=5pf Rs=0.01)
- .MODEL Dkarev D (Is=1E-10 Cjo=5pf Rs=0.01)
- .MODEL Dakfwd D (Is=4E-11 Cjo=5pf)
- .MODEL Dbreak D (Ibv=1E-7 Bv={1.1*Vrrm} Cjo=5pf Rs=0.5)
-
- * Allow the gate to float if required
- Rfloat gate cathode 1e10
-
- .ENDS
- *
- .SUBCKT 2N1595 anode gate cathode
- * "Typical" parameters
- X1 anode gate cathode Scr PARAMS:
- + Vdrm=50v Vrrm=50v Ih=5ma Vtm=1.1v Itm=1
- + dVdt=1e9 Igt=2ma Vgt=.7v Ton=0.8u Toff=10u
- + Idrm=10u
- * 90-5-18 Morotola DL137, Rev 2, 3/89
- .ENDS
-
- * Library of Triac models
-
- * NOTE: This library requires the "Analog Behavioral Modeling"
- * option available with PSpice.
-
- * This macromodel uses two controlled switches as the basic triac
- * structure. The model was developed to provide firing in all
- * four quadrants. It should be noted, however, that the library
- * contains parts which the manufacturer has guaranteed will fire
- * in 4 quadrants, 3 quadrants or 2 quadrants. Therefore, the
- * designer should always use the manufacturer's data book for
- * part selection.
-
- * The required parameters were derived from data sheet (Motorola)
- * information on each part. When available, only "typical"
- * parameters are used (except for Idrm which is always
- * a "max" value). If a "typical" parameter is not available,
- * a "min" or "max" value may be used in which case a comment is
- * made in the library.
-
- * The triacs are modeled at room temperature and do not track
- * changes with temperature. Note that Vdrm is specified by the
- * manufacturer as valid over a temperature range. Also, in
- * nearly all cases, dVdt is specified by the manufacturer at
- * approximately 100 degrees C. This results in a model which
- * is somewhat "conservative" for a room temperature model.
-
- * The parameter dVdt (when available from the date sheet) is used
- * to model the Critical Rate of Rise of Off-State Voltage. If
- * not specified, dVdt is defaulted to 1000 V/microsecond. The
- * Critical Rate of Rise of Commutation Voltage is not modeled.
- * It is generally good practice to use an RC snubber network
- * across the triac to limit the commutating dvdt to a value below
- * the maximum allowable rating (see manufacturer's data sheet and
- * application notes). Also, note that the turn-off time is
- * assumed to be zero.
-
- .SUBCKT Triac MT2 gate MT1 PARAMS:
- + Vdrm=400v Idrm=10u
- + Ih=6ma dVdt=50e6
- + Igt=20ma Vgt=0.9v
- + Vtm=1.3v Itm=17
- + Ton=1.5u
-
- * Where:
- * Vdrm => Forward breakover voltage
- * Idrm => Peak blocking current
- * Ih => Holding current [MT2(+)]
- * dVdt => Critical value for dV/dt triggering
- * Igt => Gate trigger current [MT2(+),G(-)]
- * Vgt => Gate trigger voltage [MT2(+),G(-)]
- * Vtm => On-state voltage
- * Itm => On-state current
- * Ton => Turn-on time
-
- * Main conduction path
- Striac MT2 MT20 cntrol 0 Vswitch ; controlled switch
- Dak1 MT20 MT22 Dak OFF ; triac is initially off
- VIak MT22 MT1 ; current sensor
- Striacr MT2 MT23 cntrolr 0 Vswitch ; controlled switch
- Dka1 MT21 MT23 Dak OFF ; triac is initially off
- VIka MT1 MT21 ; reverse current sense
-
- * dVdt Turn-on
- Emon dvdt0 0 TABLE {ABS(V(MT2,MT1))} (0 0) (2000 2000)
- CdVdt dvdt0 dvdt1 100pfd ; displacement current
- Rdlay dvdt1 dvdt2 1k
- VdVdt dvdt2 MT1 DC 0.0
- EdVdt condvdt 0 TABLE {i(vdVdt)-100p*dVdt} (0 0 ) (.1m 10)
- RdVdt condvdt 0 1meg
-
- * Gate
- Rseries gate gate1 {(Vgt-0.65)/Igt}
- Rshunt gate1 gate2 {0.65/Igt}
- Dgkf gate1 gate2 Dgk
- Dgkr gate2 gate1 Dgk
- VIgf gate2 MT1 DC 0.0 ; current sensor
-
- * Gate Turn-on
- Egate congate 0 TABLE {(ABS(i(VIgf))-0.95*Igt)} (0 0) (1m 10)
- Rgate congate 0 1meg
-
- * Holding current, holding voltage (Quadrant I)
- Emain1 main1 0 TABLE {i(VIak)-Ih+5e-3*i(VIgf)/Igt} (0 0) (.1m 1)
- Rmain1 main1 0 1meg
- Emain2 main2 0 TABLE {v(MT2,MT1)-(Ih*Vtm/Itm)} (0 0) (.1m 1)
- Rmain2 main2 0 1meg
- Emain3 cnhold 0 TABLE {v(main1,0)*v(main2,0)} (0 0 (1 10)
- Rmain3 cnhold 0 1meg
-
- * Holding current, holding voltage (Quadrant III)
- Emain1r main1r 0 TABLE {i(VIka)-Ih-5e-3*i(VIgf)/Igt} (0 0) (.1m 1)
- Rmain1r main1r 0 1meg
- Emain2r main2r 0 TABLE {v(MT1,MT2)-(Ih*Vtm/Itm)} (0 0) (.1m 1)
- Rmain2r main2r 0 1meg
- Emain3r cnholdr 0 TABLE {v(main1r,0)*v(main2r,0)} (0 0 (1 10)
- Rmain3r cnholdr 0 1meg
-
- * Main
- Emain4 main4 0 table {(1.0-ABS(i(VIgf))/Igt)} (0 0) (1 1)
- Rmain4 main4 0 1meg
- Emain5 cnmain 0 table {v(mt2,mt1)-1.05*Vdrm*v(main4)} (0 0) (1 10)
- Rmain5 cnmain 0 1meg
-
- Emain5r cnmainr 0 table {v(mt1,mt2)-1.05*Vdrm*v(main4)} (0 0) (1 10)
- Rmain5r cnmainr 0 1meg
-
- * Turn-on/Turn-off control (Quadrant I )
- Eonoff contot 0 TABLE
- + {v(cnmain)+v(congate)+v(cnhold)+v(condvdt)} (0 0) (10 10)
-
- * Turn-on/Turn-off delays (Quadrant I)
- Rton contot dlay1 825
- Dton dlay1 cntrol Delay
- Rtoff contot dlay2 {2.9E-3/Ton}
- Dtoff cntrol dlay2 Delay
- Cton cntrol 0 {Ton/454}
-
- * Turn-on/Turn-off control (Quadrant III)
- Eonoffr contotr 0 TABLE
- + {v(cnmainr)+v(congate)+v(cnholdr)+v(condvdt)} (0 0) (10 10)
-
- * Turn-on/Turn-off delays (Quadrant III)
- Rtonr contotr dlayr1 825
- Dtonr dlayr1 cntrolr Delay
- Rtoffr contotr dlayr2 {2.9E-3/Ton}
- Dtoffr cntrolr dlayr2 Delay
- Ctonr cntrolr 0 {Ton/454}
-
- * Controlled switch model
- .MODEL Vswitch vswitch
- + (Ron = {(Vtm-0.7)/Itm}, Roff = {1.75E-3*Vdrm/Idrm},
- + Von = 5.0, Voff = 1.5)
-
- * Diodes
- .MODEL Dgk D (Is=1E-16 Cjo=50pf Rs=5)
- .MODEL Delay D (Is=1E-12 Cjo=5pf Rs=0.01)
- .MODEL Dak D (Is=4E-11 Cjo=5pf)
-
- * Allow the gate to float if required
- Rfloat gate MT1 1e10
-
- .ENDS
- *
- .SUBCKT 2N5444 MT2 gate MT1
- * Min and Max parameters
- X1 MT2 gate MT1 Triac PARAMS:
- + Vdrm=200v Idrm=10u Ih=70ma dVdt=50e6 Ton=1u
- + Igt=70ma Vgt=2.0v Vtm=1.65v Itm=56
- * 90-5-18 Morotola DL137, Rev 2, 3/89
- .ENDS
-
- * End of library file
-