home *** CD-ROM | disk | FTP | other *** search
- function [tout, yout] = ode23(ypfun, t0, tfinal, y0, tol, trace)
- %ODE23 Solve differential equations, low order method.
- % ODE23 integrates a system of ordinary differential equations using
- % 2nd and 3rd order Runge-Kutta formulas.
- % [T,Y] = ODE23('yprime', T0, Tfinal, Y0) integrates the system of
- % ordinary differential equations described by the M-file YPRIME.M,
- % over the interval T0 to Tfinal, with initial conditions Y0.
- % [T, Y] = ODE23(F, T0, Tfinal, Y0, TOL, 1) uses tolerance TOL
- % and displays status while the integration proceeds.
- %
- % INPUT:
- % F - String containing name of user-supplied problem description.
- % Call: yprime = fun(t,y) where F = 'fun'.
- % t - Time (scalar).
- % y - Solution column-vector.
- % yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.
- % t0 - Initial value of t.
- % tfinal- Final value of t.
- % y0 - Initial value column-vector.
- % tol - The desired accuracy. (Default: tol = 1.e-3).
- % trace - If nonzero, each step is printed. (Default: trace = 0).
- %
- % OUTPUT:
- % T - Returned integration time points (column-vector).
- % Y - Returned solution, one solution column-vector per tout-value.
- %
- % The result can be displayed by: plot(tout, yout).
- %
- % See also ODE45, ODEDEMO.
-
- % C.B. Moler, 3-25-87, 8-26-91, 9-08-92.
- % Copyright (c) 1984-93 by The MathWorks, Inc.
-
- % Initialization
- pow = 1/3;
- if nargin < 5, tol = 1.e-3; end
- if nargin < 6, trace = 0; end
-
- t = t0;
- hmax = (tfinal - t)/16;
- h = hmax/8;
- y = y0(:);
- chunk = 128;
- tout = zeros(chunk,1);
- yout = zeros(chunk,length(y));
- k = 1;
- tout(k) = t;
- yout(k,:) = y.';
-
- if trace
- clc, t, h, y
- end
-
- % The main loop
-
- while (t < tfinal) & (t + h > t)
- if t + h > tfinal, h = tfinal - t; end
-
- % Compute the slopes
- s1 = feval(ypfun, t, y); s1 = s1(:);
- s2 = feval(ypfun, t+h, y+h*s1); s2 = s2(:);
- s3 = feval(ypfun, t+h/2, y+h*(s1+s2)/4); s3 = s3(:);
-
- % Estimate the error and the acceptable error
- delta = norm(h*(s1 - 2*s3 + s2)/3,'inf');
- tau = tol*max(norm(y,'inf'),1.0);
-
- % Update the solution only if the error is acceptable
- if delta <= tau
- t = t + h;
- y = y + h*(s1 + 4*s3 + s2)/6;
- k = k+1;
- if k > length(tout)
- tout = [tout; zeros(chunk,1)];
- yout = [yout; zeros(chunk,length(y))];
- end
- tout(k) = t;
- yout(k,:) = y.';
- end
- if trace
- home, t, h, y
- end
-
- % Update the step size
- if delta ~= 0.0
- h = min(hmax, 0.9*h*(tau/delta)^pow);
- end
- end
-
- if (t < tfinal)
- disp('Singularity likely.')
- t
- end
-
- tout = tout(1:k);
- yout = yout(1:k,:);
-