home *** CD-ROM | disk | FTP | other *** search
- function [thm,yhat,p,phi,psi] = rbj(z,nn,adm,adg,th0,p0,phi,psi)
- %RBJ Computes estimates recursively for a BOX-JENKINS model using the
- % Recursive Prediction Error Method
- %
- % [THM,YHAT] = rbj(Z,NN,adm,adg)
- %
- % Z: The output-input data z=[y u] (single input only!)
- % NN : NN=[nb nc nd nf nk], The orders and delay of a general
- % input-output model (see HELP BJ)
- % adm: Adaptation mechanism. adg: Adaptation gain
- % adm='ff', adg=lam: Forgetting factor algorithm, with forg factor lam
- % adm='kf', adg=R1: The Kalman filter algorithm with R1 as covariance
- % matrix of the parameter changes per time step
- % adm='ng', adg=gam: A normalized gradient algorithm, with gain gam
- % adm='ug', adg=gam: An Unnormalized gradient algorithm with gain gam
- % THM: The resulting estimates. Row k contains the estimates "in alpha-
- % betic order" corresponding to data up to time k (row k in Z)
- % YHAT: The predicted values of the outputs. Row k corresponds to time k
- % Initial value of parameters(TH0) and of "P-matrix" (P0) can be given by
- % [THM,YHAT,P] = rbj(Z,NN,adm,adg,TH0,P0)
- % Initial and last values of auxiliary data vectors phi and psi are
- % obtained by [THM,YHAT,P,phi,psi]=rbj(Z,NN,adm,adg,TH0,P0,phi0,psi0).
- %
- % See also RARX, RARMAX, ROE, RPEM and RPLR.
-
- % L. Ljung 10-1-89
- % Copyright (c) 1989-90 by the MathWorks, Inc.
- % All Rights Reserved.
-
- [nz,ns]=size(z);
- if ns<=1,error('This routine requires an input. For a time series, use RARMAX or RARX instead!'),end
- if ns>2,error('This routine is for single input only. Use RPEM instead!'),end
- if length(nn)~=5,error('Incorrect number of orders specified! nn = [nb nc nd nf nk]'),end
- nb=nn(1);nc=nn(2);nd=nn(3);nf=nn(4);nk=nn(5);nu=1;
- if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence if necessary!'),end
- d=sum(nn(1:4));
- if ns>2,error('Sorry, this routine is for single input only!'),end
- ng=nf+nc;
- nbm=max([nb+nk-1,ng,nd]);ndm=max(nd,nc);nfm=max([nf,ng,nd]);
- tic=nb+1:nb+nc;tif=nb+nc+nd+1:d;
- tib=1:nb;tid=nb+nc+1:nb+nc+nd;
- ib=nk:nb+nk-1;ibg=1:ng;ibd=nk:nk+nd-1;
- ic=nbm+1:nbm+nc;
- id=nbm+nc+1:nbm+nc+nd;idc=nbm+nc+1:nbm+nc+nc;
- iff=nbm+nc+ndm+1:nbm+nc+ndm+nf;ifg=nbm+nc+ndm+1:nbm+nc+ndm+ng;
- ifd=nbm+nc+ndm+1:nbm+nc+ndm+nd;
- dm=nfm+nbm+nc+ndm;
- i=[ib ic id iff];
- if nargin<8, psi=zeros(dm,1);end
- if nargin<7, phi=zeros(dm,1);end
- if nargin<6, p0=10000*eye(d);end
- if nargin<5, th0=eps*ones(d,1);end
- if isempty(psi),psi=zeros(dm,1);end
- if isempty(phi),phi=zeros(dm,1);end
- if isempty(p0),p0=10000*eye(d);end
- if isempty(th0),th0=eps*ones(d,1);end
- if length(th0)~=d, error('The length of th0 must equal the number of estimated parameters!'),end
- [th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end
- p=p0;th=th0;
- if adm(1)=='f', R1=zeros(d,d);lam=adg;end
- if adm(1)=='k', [sR1,SR1]=size(adg);
- if sR1~=d | SR1~=d,error('The R1 matrix should be a square matrix with dimension equal to number of parameters!'),end
- R1=adg;lam=1;
- end
- if adm(2)=='g', grad=1;else grad=0;end
-
- for kcou=1:nz
- yh=phi(i)'*th;
- epsi=z(kcou,1)-yh;
- if ~grad,K=p*psi(i)/(lam + psi(i)'*p*psi(i));
- p=(p-K*psi(i)'*p)/lam+R1;
- else K=adg*psi(i);end
- if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
- th=th+K*epsi;
- c=fstab([1;th(tic)])';f=fstab([1;th(tif)])';d=[1;th(tid)];
- th(tic)=c(2:nc+1);th(tif)=f(2:nf+1);g=conv(f,c);%HIT*********
- w=th([tib tif])'*phi([ib iff]);
- util=d'*[z(kcou,2);phi(ibd)]-g'*[0;psi(ibg)];
- if nf>0
- wtil=d'*[w;-phi(ifd)]+g'*[0;psi(ifg)];
- end
- v=z(kcou,1)-w;
- epsilon=v-th([tic tid])'*phi([ic id]);
-
- if nc>0
- epstil=c'*[epsilon;-psi(ic)];end
- if nd>0
- vtil=c'*[v;psi(idc)];
- end
- phi(2:dm)=phi(1:dm-1);psi(2:dm)=psi(1:dm-1);
-
- if nb>0,phi(1)=z(kcou,2);psi(1)=util;end
- if nc>0,phi(ic(1))=epsilon;psi(ic(1))=epstil;end
- if nd>0,phi(id(1))=-v;psi(id(1))=-vtil;end
- if nf>0,phi(iff(1))=-w;psi(iff(1))=-wtil;end
- thm(kcou,:)=th';yhat(kcou)=yh;
- end
- yhat=yhat';