home *** CD-ROM | disk | FTP | other *** search
- function eta=mvarx(z,nn,maxsize,Tsamp);
- %MVARX Estimates (multivariate) ARX-models
- % Auxiliary routine to ARX
- % TH = mvarx(Z,[NA NB NK])
- %
- % Z: The output-input data Z = [Y U] with the outputs Y
- % and the inputs U arranged in column vectors
- % [NA NB NK]: defines the model structure as follows:
- % NA: an ny|ny matrix whose i-j entry is the order of the
- % polynomial (in the delay operator) that relates the
- % j:th output to the i:th output
- % NB: an ny|nu matrix whose i-j entry is the order of the
- % polynomial that related the j:th input to the i:th output
- % NK: an ny|nu matrix whose i-j entry is the delay from
- % the j:th input to the i:th output
- % (ny: the number of outputs, nu: the number of inputs)
- %
- % Each row of [NA NB NK] is thus consistent with the way
- % single output ARX structures is defined (See Help ARX)
- %
- % TH: the resulting model, given in the THETA-format (see HELP THETA)
- %
- % With TH=mvarx(Z,[NA NB NK],MAXSIZE,T) some additional
- % options can be achieved. See HELP AUXVAR for details
-
- %
- % L. Ljung 10-2-90
- % Copyright (c) 1987-90 by the MathWorks, Inc.
- % All Rights Reserved.
-
- [nnr,nnc]=size(nn);
- ny=nnr;nu=(nnc-ny)/2;
- [Ncap,nz]=size(z);
- if nz>Ncap,error(' Data should be organized in column vectors!'),return,end
- if nz~=(nu+ny),disp(' Incorrect number of orders specified!'),disp('For an AR-model nn=na'),disp('For an ARX-model, nn=[na nb nk]'),
- error('see above'),return,end
- na=nn(:,1:ny);
- if nu>0,nb=nn(:,ny+1:ny+nu);else nb=zeros(ny,1);end
- if nu>0,nk=nn(:,ny+nu+1:nnc);else nk=zeros(ny,1);end
-
-
- nma=max(max(na)');nbkm=max(max(nb+nk)')-1;nkm=min(min(nk)');
- nd=sum(sum(na)')+sum(sum(nb)');
- n=nma*ny+(nbkm-nkm+1)*nu;
-
- % *** Set up default values **
- maxsdef=idmsize(Ncap,nd);
- if nargin<4, Tsamp=1;end
- if nargin<3, maxsize=maxsdef;end
- if isempty(Tsamp),Tsamp=1;end,if Tsamp<0,Tsamp=1;end % Changed T to Tsamp, JNL 9/19/91
- if isempty(maxsize),maxsize=maxsdef;end,if maxsize<0, maxsize=maxsdef; end
-
-
- % *** construct regression matrix ***
-
- nmax=max([nma nbkm]');
- M=floor(maxsize/n);
- R=zeros(n);F=zeros(n,ny);
- for k=nmax:M:Ncap
- if min(Ncap,k+M)<k+1,ntz=0;else ntz=1;end
-
- if ntz,jj=(k+1:min(Ncap,k+M));phi=zeros(length(jj),n);end
-
- for kl=1:nma,
- if ntz,
- phi(:,(kl-1)*ny+1:kl*ny)=z(jj-kl,1:ny);end
- end
- ss=nma*ny;
-
- for kl=nkm:nbkm,
- if ntz,phi(:,ss+(kl-nkm)*nu+1:ss+(kl-nkm+1)*nu)=z(jj-kl,ny+1:nz);end
- end
- if ntz,R=R+phi'*phi; F=F+phi'*z(jj,1:ny);end
-
- end
- %
- % *** compute loss functions ***
- %
- par=[];parb=[];p11=[];p12=[];p22=[];lamm=[];
- for outp=1:ny
- rowind=[];
- for kk=1:ny
- rowind=[rowind kk:ny:ny*na(outp,kk)];
- end
- for kk=1:nu
- baslev=nma*ny+(nk(outp,kk)-nkm)*nu;
- rowind=[rowind baslev+kk:nu:baslev+nu*nb(outp,kk)];
- end
- rowind=sort(rowind);
-
- if Ncap>M,
- th=R(rowind,rowind)\F(rowind,outp);
- else th=phi(:,rowind)\z(jj,outp);
- end
- pth=inv(R(rowind,rowind));
- LAM=(z(nmax+1:Ncap,outp)'*z(nmax+1:Ncap,outp)-F(rowind,outp)'*pth*...
- F(rowind,outp))/(Ncap-nmax);
- pth=LAM*pth;
- lamm=[[lamm,zeros(length(lamm),1)];[zeros(1,length(lamm)),LAM]];
- k00=sum((nk(outp,:)==0).*(nb(outp,:)>0));
- naux=sum(na(outp,:));
- ind1=1:naux;ind2=naux+k00+1:length(th);ind3=naux+1:naux+k00;
- par=[par th(ind1)' th(ind2)'];parb=[parb th(ind3)'];
- [sp11,ssp11]=size(p11);lni=length(ind1)+length(ind2);
- p11=[[p11,zeros(sp11,lni)];[zeros(lni,sp11),[[pth(ind1,ind1),pth(ind1,ind2)];...
- [pth(ind2,ind1),pth(ind2,ind2)]]]];
- [sp12,ssp12]=size(p12);
- [sp22,ssp22]=size(p22);
- p12=[[p12,zeros(sp11,length(ind3))];[zeros(lni,ssp12),[pth(ind1,ind3);pth(ind2,ind3)]]];
- p22=[[p22,zeros(sp22,length(ind3))];[zeros(length(ind3),ssp22),pth(ind3,ind3)]];
-
- end
-
- eta=mketaarx(nn,[par parb],lamm,Tsamp);
- eta(2,7)=31;e=pe(z,eta); lamm=e'*e/(Ncap-nmax);
- pvar=[[p11,p12];[p12',p22]];
- d=length([par parb]);
- eta(4:3+d,1:d)=pvar;rarg=eta(1,6);
- eta(4+d+rarg:3+ny+d+rarg,1:ny)=lamm;eta(1,1)=det(lamm);
- eta(2,1)=eta(1,1)*(1+nd/Ncap)/(1-nd/Ncap);
-